OneFormer / oneformer /config.py
praeclarumjj3's picture
Create Space
6e445f1
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
from detectron2.config import CfgNode as CN
__all__ = ["add_common_config", "add_oneformer_config", "add_swin_config",
"add_dinat_config", "add_beit_adapter_config", "add_convnext_config"]
def add_common_config(cfg):
"""
Add config for common configuration
"""
# data config
# select the dataset mapper
cfg.INPUT.DATASET_MAPPER_NAME = "oneformer_unified"
# Color augmentation
cfg.INPUT.COLOR_AUG_SSD = False
# We retry random cropping until no single category in semantic segmentation GT occupies more
# than `SINGLE_CATEGORY_MAX_AREA` part of the crop.
cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA = 1.0
# Pad image and segmentation GT in dataset mapper.
cfg.INPUT.SIZE_DIVISIBILITY = -1
cfg.INPUT.TASK_SEQ_LEN = 77
cfg.INPUT.MAX_SEQ_LEN = 77
cfg.INPUT.TASK_PROB = CN()
cfg.INPUT.TASK_PROB.SEMANTIC = 0.33
cfg.INPUT.TASK_PROB.INSTANCE = 0.66
# test dataset
cfg.DATASETS.TEST_PANOPTIC = ("",)
cfg.DATASETS.TEST_INSTANCE = ("",)
cfg.DATASETS.TEST_SEMANTIC = ("",)
# solver config
# weight decay on embedding
cfg.SOLVER.WEIGHT_DECAY_EMBED = 0.0
# optimizer
cfg.SOLVER.OPTIMIZER = "ADAMW"
cfg.SOLVER.BACKBONE_MULTIPLIER = 0.1
# wandb
cfg.WANDB = CN()
cfg.WANDB.PROJECT = "unified_dense_recognition"
cfg.WANDB.NAME = None
cfg.MODEL.IS_TRAIN = False
cfg.MODEL.IS_DEMO = True
# text encoder config
cfg.MODEL.TEXT_ENCODER = CN()
cfg.MODEL.TEXT_ENCODER.WIDTH = 256
cfg.MODEL.TEXT_ENCODER.CONTEXT_LENGTH = 77
cfg.MODEL.TEXT_ENCODER.NUM_LAYERS = 12
cfg.MODEL.TEXT_ENCODER.VOCAB_SIZE = 49408
cfg.MODEL.TEXT_ENCODER.PROJ_NUM_LAYERS = 2
cfg.MODEL.TEXT_ENCODER.N_CTX = 16
# mask_former inference config
cfg.MODEL.TEST = CN()
cfg.MODEL.TEST.SEMANTIC_ON = True
cfg.MODEL.TEST.INSTANCE_ON = False
cfg.MODEL.TEST.PANOPTIC_ON = False
cfg.MODEL.TEST.DETECTION_ON = False
cfg.MODEL.TEST.OBJECT_MASK_THRESHOLD = 0.0
cfg.MODEL.TEST.OVERLAP_THRESHOLD = 0.0
cfg.MODEL.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE = False
cfg.MODEL.TEST.TASK = "panoptic"
# TEST AUG Slide
cfg.TEST.AUG.IS_SLIDE = False
cfg.TEST.AUG.CROP_SIZE = (640, 640)
cfg.TEST.AUG.STRIDE = (426, 426)
cfg.TEST.AUG.SCALE = (2048, 640)
cfg.TEST.AUG.SETR_MULTI_SCALE = True
cfg.TEST.AUG.KEEP_RATIO = True
cfg.TEST.AUG.SIZE_DIVISOR = 32
# pixel decoder config
cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
# adding transformer in pixel decoder
cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 0
# pixel decoder
cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME = "BasePixelDecoder"
cfg.MODEL.SEM_SEG_HEAD.SEM_EMBED_DIM = 256
cfg.MODEL.SEM_SEG_HEAD.INST_EMBED_DIM = 256
# LSJ aug
cfg.INPUT.IMAGE_SIZE = 1024
cfg.INPUT.MIN_SCALE = 0.1
cfg.INPUT.MAX_SCALE = 2.0
# MSDeformAttn encoder configs
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["res3", "res4", "res5"]
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_POINTS = 4
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_HEADS = 8
def add_oneformer_config(cfg):
"""
Add config for ONE_FORMER.
"""
# mask_former model config
cfg.MODEL.ONE_FORMER = CN()
# loss
cfg.MODEL.ONE_FORMER.DEEP_SUPERVISION = True
cfg.MODEL.ONE_FORMER.NO_OBJECT_WEIGHT = 0.1
cfg.MODEL.ONE_FORMER.CLASS_WEIGHT = 1.0
cfg.MODEL.ONE_FORMER.DICE_WEIGHT = 1.0
cfg.MODEL.ONE_FORMER.MASK_WEIGHT = 20.0
cfg.MODEL.ONE_FORMER.CONTRASTIVE_WEIGHT = 0.5
cfg.MODEL.ONE_FORMER.CONTRASTIVE_TEMPERATURE = 0.07
# transformer config
cfg.MODEL.ONE_FORMER.NHEADS = 8
cfg.MODEL.ONE_FORMER.DROPOUT = 0.1
cfg.MODEL.ONE_FORMER.DIM_FEEDFORWARD = 2048
cfg.MODEL.ONE_FORMER.ENC_LAYERS = 0
cfg.MODEL.ONE_FORMER.CLASS_DEC_LAYERS = 2
cfg.MODEL.ONE_FORMER.DEC_LAYERS = 6
cfg.MODEL.ONE_FORMER.PRE_NORM = False
cfg.MODEL.ONE_FORMER.HIDDEN_DIM = 256
cfg.MODEL.ONE_FORMER.NUM_OBJECT_QUERIES = 120
cfg.MODEL.ONE_FORMER.NUM_OBJECT_CTX = 16
cfg.MODEL.ONE_FORMER.USE_TASK_NORM = True
cfg.MODEL.ONE_FORMER.TRANSFORMER_IN_FEATURE = "res5"
cfg.MODEL.ONE_FORMER.ENFORCE_INPUT_PROJ = False
# Sometimes `backbone.size_divisibility` is set to 0 for some backbone (e.g. ResNet)
# you can use this config to override
cfg.MODEL.ONE_FORMER.SIZE_DIVISIBILITY = 32
# transformer module
cfg.MODEL.ONE_FORMER.TRANSFORMER_DECODER_NAME = "ContrastiveMultiScaleMaskedTransformerDecoder"
# point loss configs
# Number of points sampled during training for a mask point head.
cfg.MODEL.ONE_FORMER.TRAIN_NUM_POINTS = 112 * 112
# Oversampling parameter for PointRend point sampling during training. Parameter `k` in the
# original paper.
cfg.MODEL.ONE_FORMER.OVERSAMPLE_RATIO = 3.0
# Importance sampling parameter for PointRend point sampling during training. Parametr `beta` in
# the original paper.
cfg.MODEL.ONE_FORMER.IMPORTANCE_SAMPLE_RATIO = 0.75
def add_swin_config(cfg):
"""
Add config forSWIN Backbone.
"""
# swin transformer backbone
cfg.MODEL.SWIN = CN()
cfg.MODEL.SWIN.PRETRAIN_IMG_SIZE = 224
cfg.MODEL.SWIN.PATCH_SIZE = 4
cfg.MODEL.SWIN.EMBED_DIM = 96
cfg.MODEL.SWIN.DEPTHS = [2, 2, 6, 2]
cfg.MODEL.SWIN.NUM_HEADS = [3, 6, 12, 24]
cfg.MODEL.SWIN.WINDOW_SIZE = 7
cfg.MODEL.SWIN.MLP_RATIO = 4.0
cfg.MODEL.SWIN.QKV_BIAS = True
cfg.MODEL.SWIN.QK_SCALE = None
cfg.MODEL.SWIN.DROP_RATE = 0.0
cfg.MODEL.SWIN.ATTN_DROP_RATE = 0.0
cfg.MODEL.SWIN.DROP_PATH_RATE = 0.3
cfg.MODEL.SWIN.APE = False
cfg.MODEL.SWIN.PATCH_NORM = True
cfg.MODEL.SWIN.OUT_FEATURES = ["res2", "res3", "res4", "res5"]
cfg.MODEL.SWIN.USE_CHECKPOINT = False
## Semask additions
cfg.MODEL.SWIN.SEM_WINDOW_SIZE = 7
cfg.MODEL.SWIN.NUM_SEM_BLOCKS = 1
def add_dinat_config(cfg):
"""
Add config for NAT Backbone.
"""
# DINAT transformer backbone
cfg.MODEL.DiNAT = CN()
cfg.MODEL.DiNAT.DEPTHS = [3, 4, 18, 5]
cfg.MODEL.DiNAT.OUT_FEATURES = ["res2", "res3", "res4", "res5"]
cfg.MODEL.DiNAT.EMBED_DIM = 64
cfg.MODEL.DiNAT.MLP_RATIO = 3.0
cfg.MODEL.DiNAT.NUM_HEADS = [2, 4, 8, 16]
cfg.MODEL.DiNAT.DROP_PATH_RATE = 0.2
cfg.MODEL.DiNAT.KERNEL_SIZE = 7
cfg.MODEL.DiNAT.DILATIONS = [[1, 16, 1], [1, 4, 1, 8], [1, 2, 1, 3, 1, 4], [1, 2, 1, 2, 1]]
cfg.MODEL.DiNAT.OUT_INDICES = (0, 1, 2, 3)
cfg.MODEL.DiNAT.QKV_BIAS = True
cfg.MODEL.DiNAT.QK_SCALE = None
cfg.MODEL.DiNAT.DROP_RATE = 0
cfg.MODEL.DiNAT.ATTN_DROP_RATE = 0.
cfg.MODEL.DiNAT.IN_PATCH_SIZE = 4
def add_convnext_config(cfg):
"""
Add config for ConvNeXt Backbone.
"""
# swin transformer backbone
cfg.MODEL.CONVNEXT = CN()
cfg.MODEL.CONVNEXT.IN_CHANNELS = 3
cfg.MODEL.CONVNEXT.DEPTHS = [3, 3, 27, 3]
cfg.MODEL.CONVNEXT.DIMS = [192, 384, 768, 1536]
cfg.MODEL.CONVNEXT.DROP_PATH_RATE = 0.4
cfg.MODEL.CONVNEXT.LSIT = 1.0
cfg.MODEL.CONVNEXT.OUT_INDICES = [0, 1, 2, 3]
cfg.MODEL.CONVNEXT.OUT_FEATURES = ["res2", "res3", "res4", "res5"]
def add_beit_adapter_config(cfg):
"""
Add config for BEiT Adapter Backbone.
"""
# beit adapter backbone
cfg.MODEL.BEiTAdapter = CN()
cfg.MODEL.BEiTAdapter.IMG_SIZE = 640
cfg.MODEL.BEiTAdapter.PATCH_SIZE = 16
cfg.MODEL.BEiTAdapter.EMBED_DIM = 1024
cfg.MODEL.BEiTAdapter.DEPTH = 24
cfg.MODEL.BEiTAdapter.NUM_HEADS = 16
cfg.MODEL.BEiTAdapter.MLP_RATIO = 4
cfg.MODEL.BEiTAdapter.QKV_BIAS = True
cfg.MODEL.BEiTAdapter.USE_ABS_POS_EMB = False
cfg.MODEL.BEiTAdapter.USE_REL_POS_BIAS = True
cfg.MODEL.BEiTAdapter.INIT_VALUES = 1e-6
cfg.MODEL.BEiTAdapter.DROP_PATH_RATE = 0.3
cfg.MODEL.BEiTAdapter.CONV_INPLANE = 64
cfg.MODEL.BEiTAdapter.N_POINTS = 4
cfg.MODEL.BEiTAdapter.DEFORM_NUM_HEADS = 16
cfg.MODEL.BEiTAdapter.CFFN_RATIO = 0.25
cfg.MODEL.BEiTAdapter.DEFORM_RATIO = 0.5
cfg.MODEL.BEiTAdapter.WITH_CP = True
cfg.MODEL.BEiTAdapter.INTERACTION_INDEXES=[[0, 5], [6, 11], [12, 17], [18, 23]]
cfg.MODEL.BEiTAdapter.OUT_FEATURES = ["res2", "res3", "res4", "res5"]