Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -12,10 +12,10 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
|
14 |
@spaces.GPU
|
15 |
-
def generate(
|
16 |
messages = [
|
17 |
{"role": "system", "content": "You are Zurich, a 7 billion parameter Large Language model built on the Qwen 2.5 7B model developed by Alibaba Cloud, and fine-tuned by Ruben Roy. You have been fine-tuned with the GammaCorpus v2 dataset, a dataset filled with structured and filtered multi-turn conversations and was also created by Ruben Roy. You are a helpful assistant."},
|
18 |
-
{"role": "user", "content":
|
19 |
]
|
20 |
text = tokenizer.apply_chat_template(
|
21 |
messages,
|
@@ -25,12 +25,12 @@ def generate(prompt, history, temperature, top_p, top_k, max_new_tokens, repetit
|
|
25 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
26 |
generated_ids = model.generate(
|
27 |
**model_inputs,
|
28 |
-
temperature=temperature,
|
29 |
-
top_p=top_p,
|
30 |
-
top_k=top_k,
|
31 |
-
max_new_tokens=max_new_tokens,
|
32 |
-
repetition_penalty=repetition_penalty,
|
33 |
-
do_sample=True if temperature > 0 else False
|
34 |
)
|
35 |
generated_ids = [
|
36 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
@@ -162,63 +162,71 @@ examples = [
|
|
162 |
["What are the key differences between machine learning and deep learning?"]
|
163 |
]
|
164 |
|
165 |
-
def create_generation_settings():
|
166 |
-
with gr.Group():
|
167 |
-
with gr.Accordion("Generation Settings", open=False):
|
168 |
-
temperature = gr.Slider(
|
169 |
-
minimum=0.0,
|
170 |
-
maximum=2.0,
|
171 |
-
value=0.7,
|
172 |
-
step=0.1,
|
173 |
-
label="Temperature",
|
174 |
-
info="Higher values make the output more random, lower values make it more focused and deterministic"
|
175 |
-
)
|
176 |
-
top_p = gr.Slider(
|
177 |
-
minimum=0.0,
|
178 |
-
maximum=1.0,
|
179 |
-
value=0.9,
|
180 |
-
step=0.05,
|
181 |
-
label="Top P",
|
182 |
-
info="Used for nucleus sampling - controls the cumulative probability of tokens to consider"
|
183 |
-
)
|
184 |
-
top_k = gr.Slider(
|
185 |
-
minimum=1,
|
186 |
-
maximum=100,
|
187 |
-
value=50,
|
188 |
-
step=1,
|
189 |
-
label="Top K",
|
190 |
-
info="Limits the number of tokens to consider for each step of text generation"
|
191 |
-
)
|
192 |
-
max_new_tokens = gr.Slider(
|
193 |
-
minimum=1,
|
194 |
-
maximum=2048,
|
195 |
-
value=512,
|
196 |
-
step=1,
|
197 |
-
label="Max New Tokens",
|
198 |
-
info="Maximum number of tokens to generate in the response"
|
199 |
-
)
|
200 |
-
repetition_penalty = gr.Slider(
|
201 |
-
minimum=1.0,
|
202 |
-
maximum=2.0,
|
203 |
-
value=1.1,
|
204 |
-
step=0.1,
|
205 |
-
label="Repetition Penalty",
|
206 |
-
info="Higher values prevent the model from repeating the same information"
|
207 |
-
)
|
208 |
-
return temperature, top_p, top_k, max_new_tokens, repetition_penalty
|
209 |
-
|
210 |
with gr.Blocks() as demo:
|
211 |
gr.HTML(TITLE_HTML)
|
212 |
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
-
# Create the chat interface with the additional parameters
|
217 |
chatbot = gr.ChatInterface(
|
218 |
-
fn=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
examples=examples,
|
220 |
title="Chat with Zurich",
|
221 |
-
description="Ask me anything! I'm here to help with explanations, coding, math, writing, and more."
|
222 |
)
|
223 |
|
224 |
demo.launch(share=True)
|
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
|
14 |
@spaces.GPU
|
15 |
+
def generate(message, chat_history, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=512, repetition_penalty=1.1):
|
16 |
messages = [
|
17 |
{"role": "system", "content": "You are Zurich, a 7 billion parameter Large Language model built on the Qwen 2.5 7B model developed by Alibaba Cloud, and fine-tuned by Ruben Roy. You have been fine-tuned with the GammaCorpus v2 dataset, a dataset filled with structured and filtered multi-turn conversations and was also created by Ruben Roy. You are a helpful assistant."},
|
18 |
+
{"role": "user", "content": message}
|
19 |
]
|
20 |
text = tokenizer.apply_chat_template(
|
21 |
messages,
|
|
|
25 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
26 |
generated_ids = model.generate(
|
27 |
**model_inputs,
|
28 |
+
temperature=float(temperature),
|
29 |
+
top_p=float(top_p),
|
30 |
+
top_k=int(top_k),
|
31 |
+
max_new_tokens=int(max_new_tokens),
|
32 |
+
repetition_penalty=float(repetition_penalty),
|
33 |
+
do_sample=True if float(temperature) > 0 else False
|
34 |
)
|
35 |
generated_ids = [
|
36 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
|
|
162 |
["What are the key differences between machine learning and deep learning?"]
|
163 |
]
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
with gr.Blocks() as demo:
|
166 |
gr.HTML(TITLE_HTML)
|
167 |
|
168 |
+
with gr.Accordion("Generation Settings", open=False):
|
169 |
+
with gr.Row():
|
170 |
+
with gr.Column():
|
171 |
+
temperature = gr.Slider(
|
172 |
+
minimum=0.0,
|
173 |
+
maximum=2.0,
|
174 |
+
value=0.7,
|
175 |
+
step=0.1,
|
176 |
+
label="Temperature",
|
177 |
+
info="Higher values make the output more random, lower values make it more focused and deterministic",
|
178 |
+
interactive=True
|
179 |
+
)
|
180 |
+
top_p = gr.Slider(
|
181 |
+
minimum=0.0,
|
182 |
+
maximum=1.0,
|
183 |
+
value=0.9,
|
184 |
+
step=0.05,
|
185 |
+
label="Top P",
|
186 |
+
info="Controls the cumulative probability threshold for nucleus sampling",
|
187 |
+
interactive=True
|
188 |
+
)
|
189 |
+
top_k = gr.Slider(
|
190 |
+
minimum=1,
|
191 |
+
maximum=100,
|
192 |
+
value=50,
|
193 |
+
step=1,
|
194 |
+
label="Top K",
|
195 |
+
info="Limits the number of tokens to consider for each generation step",
|
196 |
+
interactive=True
|
197 |
+
)
|
198 |
+
with gr.Column():
|
199 |
+
max_new_tokens = gr.Slider(
|
200 |
+
minimum=1,
|
201 |
+
maximum=2048,
|
202 |
+
value=512,
|
203 |
+
step=1,
|
204 |
+
label="Max New Tokens",
|
205 |
+
info="Maximum number of tokens to generate in the response",
|
206 |
+
interactive=True
|
207 |
+
)
|
208 |
+
repetition_penalty = gr.Slider(
|
209 |
+
minimum=1.0,
|
210 |
+
maximum=2.0,
|
211 |
+
value=1.1,
|
212 |
+
step=0.1,
|
213 |
+
label="Repetition Penalty",
|
214 |
+
info="Higher values prevent the model from repeating the same information",
|
215 |
+
interactive=True
|
216 |
+
)
|
217 |
|
|
|
218 |
chatbot = gr.ChatInterface(
|
219 |
+
fn=generate,
|
220 |
+
additional_inputs=[
|
221 |
+
temperature,
|
222 |
+
top_p,
|
223 |
+
top_k,
|
224 |
+
max_new_tokens,
|
225 |
+
repetition_penalty
|
226 |
+
],
|
227 |
examples=examples,
|
228 |
title="Chat with Zurich",
|
229 |
+
description="Ask me anything! I'm here to help with explanations, coding, math, writing, and more."
|
230 |
)
|
231 |
|
232 |
demo.launch(share=True)
|