Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import openai
|
| 3 |
+
import sys
|
| 4 |
+
import re
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from IPython import get_ipython
|
| 8 |
+
import json
|
| 9 |
+
import requests
|
| 10 |
+
from tenacity import retry, wait_random_exponential, stop_after_attempt
|
| 11 |
+
from IPython import get_ipython
|
| 12 |
+
# from termcolor import colored # doesn't actually work in Colab ¯\_(ツ)_/¯
|
| 13 |
+
import ast
|
| 14 |
+
|
| 15 |
+
GPT_MODEL = "gpt-3.5-turbo-1106"
|
| 16 |
+
|
| 17 |
+
openai.api_key = os.environ['OPENAI_API_KEY']
|
| 18 |
+
|
| 19 |
+
def exec_python(cell):
|
| 20 |
+
# result = 0
|
| 21 |
+
print(cell)
|
| 22 |
+
# print(type(cell))
|
| 23 |
+
# code = json.loads(cell)
|
| 24 |
+
# print(code)
|
| 25 |
+
# exec(code["cell"])
|
| 26 |
+
inputcode = cell
|
| 27 |
+
print(inputcode)
|
| 28 |
+
code = inputcode
|
| 29 |
+
# code_string = code["cell"]
|
| 30 |
+
local_namespace = {}
|
| 31 |
+
try:
|
| 32 |
+
exec(code, globals(), local_namespace)
|
| 33 |
+
except Exception as e:
|
| 34 |
+
return "Please figure and solve it step by step with explanation by yourself. Remember, you must give the correct answer!"
|
| 35 |
+
print(local_namespace)
|
| 36 |
+
if not local_namespace:
|
| 37 |
+
return "Please figure and solve it step by step with explanation by yourself. Remember, you must give the correct answer!"
|
| 38 |
+
else:
|
| 39 |
+
theanswers = local_namespace.values()
|
| 40 |
+
print(theanswers)
|
| 41 |
+
local_ans = list(theanswers)[-1]
|
| 42 |
+
print(local_ans)
|
| 43 |
+
return local_ans
|
| 44 |
+
|
| 45 |
+
# Now let's define the function specification:
|
| 46 |
+
functions = [
|
| 47 |
+
{
|
| 48 |
+
"name": "exec_python",
|
| 49 |
+
"description": "run python code and return the execution result.",
|
| 50 |
+
"parameters": {
|
| 51 |
+
"type": "object",
|
| 52 |
+
"properties": {
|
| 53 |
+
"cell": {
|
| 54 |
+
"type": "string",
|
| 55 |
+
"description": "Valid Python code to execute.",
|
| 56 |
+
}
|
| 57 |
+
},
|
| 58 |
+
"required": ["cell"],
|
| 59 |
+
},
|
| 60 |
+
},
|
| 61 |
+
]
|
| 62 |
+
|
| 63 |
+
# In order to run these functions automatically, we should maintain a dictionary:
|
| 64 |
+
functions_dict = {
|
| 65 |
+
"exec_python": exec_python,
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
def openai_api_calculate_cost(usage,model):
|
| 69 |
+
pricing = {
|
| 70 |
+
# 'gpt-3.5-turbo-4k': {
|
| 71 |
+
# 'prompt': 0.0015,
|
| 72 |
+
# 'completion': 0.002,
|
| 73 |
+
# },
|
| 74 |
+
# 'gpt-3.5-turbo-16k': {
|
| 75 |
+
# 'prompt': 0.003,
|
| 76 |
+
# 'completion': 0.004,
|
| 77 |
+
# },
|
| 78 |
+
'gpt-3.5-turbo-1106': {
|
| 79 |
+
'prompt': 0.001,
|
| 80 |
+
'completion': 0.002,
|
| 81 |
+
},
|
| 82 |
+
'gpt-4-1106-preview': {
|
| 83 |
+
'prompt': 0.01,
|
| 84 |
+
'completion': 0.03,
|
| 85 |
+
},
|
| 86 |
+
'gpt-4': {
|
| 87 |
+
'prompt': 0.03,
|
| 88 |
+
'completion': 0.06,
|
| 89 |
+
},
|
| 90 |
+
# 'gpt-4-32k': {
|
| 91 |
+
# 'prompt': 0.06,
|
| 92 |
+
# 'completion': 0.12,
|
| 93 |
+
# },
|
| 94 |
+
# 'text-embedding-ada-002-v2': {
|
| 95 |
+
# 'prompt': 0.0001,
|
| 96 |
+
# 'completion': 0.0001,
|
| 97 |
+
# }
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
try:
|
| 101 |
+
model_pricing = pricing[model]
|
| 102 |
+
except KeyError:
|
| 103 |
+
raise ValueError("Invalid model specified")
|
| 104 |
+
|
| 105 |
+
prompt_cost = usage['prompt_tokens'] * model_pricing['prompt'] / 1000
|
| 106 |
+
completion_cost = usage['completion_tokens'] * model_pricing['completion'] / 1000
|
| 107 |
+
|
| 108 |
+
total_cost = prompt_cost + completion_cost
|
| 109 |
+
print(f"\nTokens used: {usage['prompt_tokens']:,} prompt + {usage['completion_tokens']:,} completion = {usage['total_tokens']:,} tokens")
|
| 110 |
+
print(f"Total cost for {model}: ${total_cost:.4f}\n")
|
| 111 |
+
|
| 112 |
+
return total_cost
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
@retry(wait=wait_random_exponential(min=1, max=40), stop=stop_after_attempt(3))
|
| 116 |
+
def chat_completion_request(messages, model, functions=None, function_call=None, temperature=0.2, top_p=0.1):
|
| 117 |
+
"""
|
| 118 |
+
This function sends a POST request to the OpenAI API to generate a chat completion.
|
| 119 |
+
Parameters:
|
| 120 |
+
- messages (list): A list of message objects. Each object should have a 'role' (either 'system', 'user', or 'assistant') and 'content'
|
| 121 |
+
(the content of the message).
|
| 122 |
+
- functions (list, optional): A list of function objects that describe the functions that the model can call.
|
| 123 |
+
- function_call (str or dict, optional): If it's a string, it can be either 'auto' (the model decides whether to call a function) or 'none'
|
| 124 |
+
(the model will not call a function). If it's a dict, it should describe the function to call.
|
| 125 |
+
- model (str): The ID of the model to use.
|
| 126 |
+
Returns:
|
| 127 |
+
- response (requests.Response): The response from the OpenAI API. If the request was successful, the response's JSON will contain the chat completion.
|
| 128 |
+
"""
|
| 129 |
+
|
| 130 |
+
# Set up the headers for the API request
|
| 131 |
+
headers = {
|
| 132 |
+
"Content-Type": "application/json",
|
| 133 |
+
"Authorization": "Bearer " + openai.api_key,
|
| 134 |
+
}
|
| 135 |
+
|
| 136 |
+
# Set up the data for the API request
|
| 137 |
+
# json_data = {"model": model, "messages": messages}
|
| 138 |
+
# json_data = {"model": model, "messages": messages, "response_format":{"type": "json_object"}}
|
| 139 |
+
json_data = {"model": model, "messages": messages, "temperature": temperature, "top_p":top_p}
|
| 140 |
+
|
| 141 |
+
# If functions were provided, add them to the data
|
| 142 |
+
if functions is not None:
|
| 143 |
+
json_data.update({"functions": functions})
|
| 144 |
+
|
| 145 |
+
# If a function call was specified, add it to the data
|
| 146 |
+
if function_call is not None:
|
| 147 |
+
json_data.update({"function_call": function_call})
|
| 148 |
+
|
| 149 |
+
# Send the API request
|
| 150 |
+
try:
|
| 151 |
+
response = requests.post(
|
| 152 |
+
"https://api.openai.com/v1/chat/completions",
|
| 153 |
+
headers=headers,
|
| 154 |
+
json=json_data,
|
| 155 |
+
)
|
| 156 |
+
return response
|
| 157 |
+
except Exception as e:
|
| 158 |
+
print("Unable to generate ChatCompletion response")
|
| 159 |
+
print(f"Exception: {e}")
|
| 160 |
+
return e
|
| 161 |
+
|
| 162 |
+
def first_call(init_prompt, user_input, input_temperature, input_top_p, model_dropdown_1):
|
| 163 |
+
# Set up a conversation
|
| 164 |
+
messages = []
|
| 165 |
+
messages.append({"role": "system", "content": init_prompt})
|
| 166 |
+
|
| 167 |
+
# Write a user message that perhaps our function can handle...?
|
| 168 |
+
messages.append({"role": "user", "content": user_input})
|
| 169 |
+
|
| 170 |
+
# Generate a response
|
| 171 |
+
chat_response = chat_completion_request(
|
| 172 |
+
messages, model_dropdown_1, functions=functions, function_call='auto', temperature=float(input_temperature), top_p=float(input_top_p)
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
# Save the JSON to a variable
|
| 177 |
+
|
| 178 |
+
assistant_message = chat_response.json()["choices"][0]["message"]
|
| 179 |
+
|
| 180 |
+
# Append response to conversation
|
| 181 |
+
messages.append(assistant_message)
|
| 182 |
+
|
| 183 |
+
usage = chat_response.json()['usage']
|
| 184 |
+
cost1 = openai_api_calculate_cost(usage,model_dropdown_1)
|
| 185 |
+
|
| 186 |
+
finish_response_status = chat_response.json()["choices"][0]["finish_reason"]
|
| 187 |
+
# Let's see what we got back before continuing
|
| 188 |
+
return assistant_message, cost1, messages, finish_response_status
|
| 189 |
+
|
| 190 |
+
def is_valid_dict_string(s):
|
| 191 |
+
try:
|
| 192 |
+
ast.literal_eval(s)
|
| 193 |
+
return True
|
| 194 |
+
except (SyntaxError, ValueError):
|
| 195 |
+
return False
|
| 196 |
+
|
| 197 |
+
def function_call_process(assistant_message):
|
| 198 |
+
if assistant_message.get("function_call") != None:
|
| 199 |
+
|
| 200 |
+
# Retrieve the name of the relevant function
|
| 201 |
+
function_name = assistant_message["function_call"]["name"]
|
| 202 |
+
|
| 203 |
+
# Retrieve the arguments to send the function
|
| 204 |
+
# function_args = json.loads(assistant_message["function_call"]["arguments"], strict=False)
|
| 205 |
+
|
| 206 |
+
# if isinstance(assistant_message["function_call"]["arguments"], dict):
|
| 207 |
+
# arg_dict = json.loads(r"{jsonload}".format(jsonload=assistant_message["function_call"]["arguments"]), strict=False)
|
| 208 |
+
# else:
|
| 209 |
+
# arg_dict = {'cell': assistant_message["function_call"]["arguments"]}
|
| 210 |
+
# arg_dict = assistant_message["function_call"]["arguments"]
|
| 211 |
+
# print(function_args)
|
| 212 |
+
|
| 213 |
+
if is_valid_dict_string(assistant_message["function_call"]["arguments"])==True:
|
| 214 |
+
arg_dict = json.loads(r"{jsonload}".format(jsonload=assistant_message["function_call"]["arguments"]), strict=False)
|
| 215 |
+
arg_dict = arg_dict['cell']
|
| 216 |
+
print("arg_dict : " + arg_dict)
|
| 217 |
+
else:
|
| 218 |
+
arg_dict = assistant_message["function_call"]["arguments"]
|
| 219 |
+
print(arg_dict)
|
| 220 |
+
|
| 221 |
+
# Look up the function and call it with the provided arguments
|
| 222 |
+
result = functions_dict[function_name](arg_dict)
|
| 223 |
+
return result
|
| 224 |
+
|
| 225 |
+
# print(result)
|
| 226 |
+
def second_prompt_build(prompt, log):
|
| 227 |
+
prompt_second = prompt.format(ans = log)
|
| 228 |
+
# prompt_second = prompt % log
|
| 229 |
+
return prompt_second
|
| 230 |
+
|
| 231 |
+
def second_call(prompt, prompt_second, messages, model_dropdown_2, function_name = "exec_python"):
|
| 232 |
+
# Add a new message to the conversation with the function result
|
| 233 |
+
messages.append({
|
| 234 |
+
"role": "function",
|
| 235 |
+
"name": function_name,
|
| 236 |
+
"content": str(prompt_second), # Convert the result to a string
|
| 237 |
+
})
|
| 238 |
+
|
| 239 |
+
# Call the model again to generate a user-facing message based on the function result
|
| 240 |
+
chat_response = chat_completion_request(
|
| 241 |
+
messages, model_dropdown_2, functions=functions
|
| 242 |
+
)
|
| 243 |
+
print("second call : "+ str(chat_response.json()))
|
| 244 |
+
assistant_message = chat_response.json()["choices"][0]["message"]
|
| 245 |
+
messages.append(assistant_message)
|
| 246 |
+
|
| 247 |
+
usage = chat_response.json()['usage']
|
| 248 |
+
cost2 = openai_api_calculate_cost(usage,model_dropdown_2)
|
| 249 |
+
|
| 250 |
+
# Print the final conversation
|
| 251 |
+
# pretty_print_conversation(messages)
|
| 252 |
+
return assistant_message, cost2, messages
|
| 253 |
+
|
| 254 |
+
def format_math_in_sentence(sentence):
|
| 255 |
+
# Regular expression to find various math expressions
|
| 256 |
+
math_pattern = re.compile(r'\\[a-zA-Z]+\{[^\}]+\}|\\frac\{[^\}]+\}\{[^\}]+\}')
|
| 257 |
+
|
| 258 |
+
# Find all math expressions in the sentence
|
| 259 |
+
math_matches = re.findall(math_pattern, sentence)
|
| 260 |
+
|
| 261 |
+
# Wrap each math expression with Markdown formatting
|
| 262 |
+
for math_match in math_matches:
|
| 263 |
+
markdown_math = f"${math_match}$"
|
| 264 |
+
sentence = sentence.replace(math_match, markdown_math)
|
| 265 |
+
|
| 266 |
+
return sentence
|
| 267 |
+
|
| 268 |
+
def main_function(init_prompt, prompt, user_input,input_temperature_1, input_top_p_1, model_dropdown_1, model_dropdown_2):
|
| 269 |
+
first_call_result, cost1, messages, finish_response_status = first_call(init_prompt, user_input, input_temperature_1, input_top_p_1, model_dropdown_1)
|
| 270 |
+
print("finish_response_status "+finish_response_status)
|
| 271 |
+
print(messages)
|
| 272 |
+
if finish_response_status == 'stop':
|
| 273 |
+
function_call_process_result = "Tidak dipanggil"
|
| 274 |
+
second_prompt_build_result = "Tidak dipanggil"
|
| 275 |
+
second_call_result = {'status':'Tidak dipanggil'}
|
| 276 |
+
cost2 = 0
|
| 277 |
+
finalmessages = {'status':'Tidak dipanggil'}
|
| 278 |
+
finalcostresult = cost1
|
| 279 |
+
finalcostrpresult = finalcostresult * 15000
|
| 280 |
+
else:
|
| 281 |
+
function_call_process_result = function_call_process(first_call_result)
|
| 282 |
+
second_prompt_build_result = second_prompt_build(prompt, function_call_process_result)
|
| 283 |
+
second_call_result, cost2, finalmessages = second_call(second_prompt_build_result, function_call_process_result, messages, model_dropdown_2)
|
| 284 |
+
finalcostresult = cost1 + cost2
|
| 285 |
+
finalcostrpresult = finalcostresult * 15000
|
| 286 |
+
veryfinaloutput = format_math_in_sentence(str(finalmessages[-1].get("content", "")))
|
| 287 |
+
return first_call_result, function_call_process_result, second_prompt_build_result, second_call_result, cost1, cost2, finalmessages, finalcostresult, finalcostrpresult, veryfinaloutput
|
| 288 |
+
|
| 289 |
+
def gradio_function():
|
| 290 |
+
init_prompt = gr.Textbox(label="init_prompt (for 1st call)")
|
| 291 |
+
prompt = gr.Textbox(label="prompt (for 2nd call)")
|
| 292 |
+
user_input = gr.Textbox(label="User Input")
|
| 293 |
+
input_temperature_1 = gr.Textbox(label="temperature_1")
|
| 294 |
+
input_top_p_1 = gr.Textbox(label="top_p_1")
|
| 295 |
+
# input_temperature_2 = gr.Textbox(label="temperature_2")
|
| 296 |
+
# input_top_p_2 = gr.Textbox(label="top_p_2")
|
| 297 |
+
output_1st_call = gr.JSON(label="Assistant (output_1st_call)")
|
| 298 |
+
output_fc_call = gr.Textbox(label="Function Call (exec_python) Result (output_fc_call)")
|
| 299 |
+
output_fc_call_with_prompt = gr.Textbox(label="Building 2nd Prompt (output_fc_call_with_2nd_prompt)")
|
| 300 |
+
output_2nd_call = gr.JSON(label="Assistant (output_2nd_call_buat_user)")
|
| 301 |
+
cost = gr.Textbox(label="Cost 1")
|
| 302 |
+
cost2 = gr.Textbox(label="Cost 2")
|
| 303 |
+
finalcost = gr.Textbox(label="Final Cost ($)")
|
| 304 |
+
finalcostrp = gr.Textbox(label="Final Cost (Rp)")
|
| 305 |
+
finalmessages = gr.JSON(label="Final Messages")
|
| 306 |
+
model_dropdown_1 = gr.Dropdown(["gpt-4", "gpt-4-1106-preview", "gpt-3.5-turbo-1106"], label="Model 1", info="Pilih model 1!")
|
| 307 |
+
model_dropdown_2 = gr.Dropdown(["gpt-4", "gpt-4-1106-preview", "gpt-3.5-turbo-1106"], label="Model 2", info="Pilih model 2!")
|
| 308 |
+
prettieroutput = gr.Markdown()
|
| 309 |
+
|
| 310 |
+
iface = gr.Interface(
|
| 311 |
+
fn=main_function,
|
| 312 |
+
inputs=[init_prompt, prompt, user_input,input_temperature_1, input_top_p_1, model_dropdown_1, model_dropdown_2],
|
| 313 |
+
outputs=[output_1st_call, output_fc_call, output_fc_call_with_prompt, output_2nd_call, cost, cost2, finalmessages, finalcost, finalcostrp, prettieroutput],
|
| 314 |
+
title="Test",
|
| 315 |
+
description="Accuracy",
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
iface.launch(share=True, debug=True)
|
| 319 |
+
|
| 320 |
+
if __name__ == "__main__":
|
| 321 |
+
gradio_function()
|