Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -113,18 +113,21 @@ def get_anomaly_samples(input_data, n_samples, outliers_fraction):
|
|
| 113 |
"Anomaly_Label": labels,
|
| 114 |
})
|
| 115 |
|
|
|
|
|
|
|
|
|
|
| 116 |
# Round values to 3 decimal places
|
| 117 |
df = df.round({"Feature1": 3, "Feature2": 3, "Anomaly_Score": 3})
|
| 118 |
|
| 119 |
# Top 10 anomalies
|
| 120 |
-
top_10 = df[df["Anomaly_Label"] == "Anomaly"].
|
| 121 |
|
| 122 |
# Middle 10 (mixed)
|
| 123 |
mid_start = len(df) // 2 - 5
|
| 124 |
middle_10 = df.iloc[mid_start: mid_start + 10]
|
| 125 |
|
| 126 |
# Bottom 10 normals
|
| 127 |
-
bottom_10 = df[df["Anomaly_Label"] == "Normal"].
|
| 128 |
|
| 129 |
return top_10, middle_10, bottom_10
|
| 130 |
|
|
@@ -134,16 +137,28 @@ with gr.Blocks() as demo:
|
|
| 134 |
gr.Markdown("## 🕵️♀️ Anomaly Detection App 🕵️♂️")
|
| 135 |
gr.Markdown("Explore anomaly detection models, feature interactions, and anomaly examples.")
|
| 136 |
|
| 137 |
-
#
|
| 138 |
-
gr.Markdown("### 1.
|
| 139 |
input_data = gr.Radio(
|
| 140 |
choices=["Central Blob", "Two Blobs", "Blob with Noise", "Moons", "Noise"],
|
| 141 |
value="Moons",
|
| 142 |
label="Dataset"
|
| 143 |
)
|
|
|
|
|
|
|
| 144 |
n_samples = gr.Slider(minimum=10, maximum=10000, step=25, value=500, label="Number of Samples")
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
|
|
|
|
|
|
|
|
|
| 147 |
input_models = ["Robust covariance", "One-Class SVM", "One-Class SVM (SGD)", "Isolation Forest", "Local Outlier Factor"]
|
| 148 |
plots = []
|
| 149 |
with gr.Row():
|
|
@@ -164,19 +179,6 @@ with gr.Blocks() as demo:
|
|
| 164 |
n_samples.change(fn=update_anomaly_comparison, inputs=anomaly_inputs, outputs=anomaly_outputs)
|
| 165 |
outliers_fraction.change(fn=update_anomaly_comparison, inputs=anomaly_inputs, outputs=anomaly_outputs)
|
| 166 |
|
| 167 |
-
# Interactive Feature Scatter Plot
|
| 168 |
-
gr.Markdown("### 2. Interactive Feature Scatter Plot")
|
| 169 |
-
feature_x = gr.Dropdown(choices=["Feature1", "Feature2"], value="Feature1", label="Feature 1")
|
| 170 |
-
feature_y = gr.Dropdown(choices=["Feature1", "Feature2"], value="Feature2", label="Feature 2")
|
| 171 |
-
scatter_plot_button = gr.Button("Generate Scatter Plot")
|
| 172 |
-
scatter_plot = gr.Plot(label="Feature Scatter Plot")
|
| 173 |
-
|
| 174 |
-
scatter_plot_button.click(
|
| 175 |
-
fn=plot_interactive_feature_scatter,
|
| 176 |
-
inputs=[input_data, feature_x, feature_y, n_samples],
|
| 177 |
-
outputs=scatter_plot,
|
| 178 |
-
)
|
| 179 |
-
|
| 180 |
# Anomaly Samples Tab
|
| 181 |
gr.Markdown("### 3. Example Anomaly Records")
|
| 182 |
top_table = gr.Dataframe(label="Top 10 Anomalies")
|
|
|
|
| 113 |
"Anomaly_Label": labels,
|
| 114 |
})
|
| 115 |
|
| 116 |
+
# Sort by Anomaly Score in descending order
|
| 117 |
+
df = df.sort_values("Anomaly_Score", ascending=False)
|
| 118 |
+
|
| 119 |
# Round values to 3 decimal places
|
| 120 |
df = df.round({"Feature1": 3, "Feature2": 3, "Anomaly_Score": 3})
|
| 121 |
|
| 122 |
# Top 10 anomalies
|
| 123 |
+
top_10 = df[df["Anomaly_Label"] == "Anomaly"].head(10)
|
| 124 |
|
| 125 |
# Middle 10 (mixed)
|
| 126 |
mid_start = len(df) // 2 - 5
|
| 127 |
middle_10 = df.iloc[mid_start: mid_start + 10]
|
| 128 |
|
| 129 |
# Bottom 10 normals
|
| 130 |
+
bottom_10 = df[df["Anomaly_Label"] == "Normal"].tail(10)
|
| 131 |
|
| 132 |
return top_10, middle_10, bottom_10
|
| 133 |
|
|
|
|
| 137 |
gr.Markdown("## 🕵️♀️ Anomaly Detection App 🕵️♂️")
|
| 138 |
gr.Markdown("Explore anomaly detection models, feature interactions, and anomaly examples.")
|
| 139 |
|
| 140 |
+
# Interactive Feature Scatter Plot
|
| 141 |
+
gr.Markdown("### 1. Interactive Feature Scatter Plot")
|
| 142 |
input_data = gr.Radio(
|
| 143 |
choices=["Central Blob", "Two Blobs", "Blob with Noise", "Moons", "Noise"],
|
| 144 |
value="Moons",
|
| 145 |
label="Dataset"
|
| 146 |
)
|
| 147 |
+
feature_x = gr.Dropdown(choices=["Feature1", "Feature2"], value="Feature1", label="Feature 1")
|
| 148 |
+
feature_y = gr.Dropdown(choices=["Feature1", "Feature2"], value="Feature2", label="Feature 2")
|
| 149 |
n_samples = gr.Slider(minimum=10, maximum=10000, step=25, value=500, label="Number of Samples")
|
| 150 |
+
scatter_plot_button = gr.Button("Generate Scatter Plot")
|
| 151 |
+
scatter_plot = gr.Plot(label="Feature Scatter Plot")
|
| 152 |
+
|
| 153 |
+
scatter_plot_button.click(
|
| 154 |
+
fn=plot_interactive_feature_scatter,
|
| 155 |
+
inputs=[input_data, feature_x, feature_y, n_samples],
|
| 156 |
+
outputs=scatter_plot,
|
| 157 |
+
)
|
| 158 |
|
| 159 |
+
# Compare Anomaly Detection Algorithms
|
| 160 |
+
gr.Markdown("### 2. Compare Anomaly Detection Algorithms")
|
| 161 |
+
outliers_fraction = gr.Slider(minimum=0.001, maximum=0.999, step=0.1, value=0.2, label="Fraction of Outliers")
|
| 162 |
input_models = ["Robust covariance", "One-Class SVM", "One-Class SVM (SGD)", "Isolation Forest", "Local Outlier Factor"]
|
| 163 |
plots = []
|
| 164 |
with gr.Row():
|
|
|
|
| 179 |
n_samples.change(fn=update_anomaly_comparison, inputs=anomaly_inputs, outputs=anomaly_outputs)
|
| 180 |
outliers_fraction.change(fn=update_anomaly_comparison, inputs=anomaly_inputs, outputs=anomaly_outputs)
|
| 181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
# Anomaly Samples Tab
|
| 183 |
gr.Markdown("### 3. Example Anomaly Records")
|
| 184 |
top_table = gr.Dataframe(label="Top 10 Anomalies")
|