Spaces:
Runtime error
Runtime error
rriverar75
commited on
Commit
•
5fba195
1
Parent(s):
656ecf4
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
inception_net = tf.keras.applications.MobileNetV2()
|
6 |
+
def classify_imagen(inp):
|
7 |
+
inp = inp.reshape((-1, 224, 224, 3))
|
8 |
+
inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)
|
9 |
+
prediction = inception_net.predict(inp).reshape(1,1000)
|
10 |
+
pred_scores = tf.keras.applications.mobilenet_v2.decode_predictions(prediction, top=100)
|
11 |
+
confidence = {f'{pred_scores[0][i][1]}': float(pred_scores[0][i][2]) for i in range(100)}
|
12 |
+
return confidence
|
13 |
+
|
14 |
+
trans = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-large-xlsr-53-spanish")
|
15 |
+
def audio2text(audio):
|
16 |
+
text = trans(audio)["text"]
|
17 |
+
return text
|
18 |
+
|
19 |
+
classificator = pipeline("text-classification", model="pysentimiento/robertuito-sentiment-analysis")
|
20 |
+
def text2sentiment(text):
|
21 |
+
return classificator(text)[0]['label']
|
22 |
+
|
23 |
+
|
24 |
+
demo = gr.Blocks()
|
25 |
+
|
26 |
+
with demo:
|
27 |
+
gr.Markdown("Este es el segundo demo con Blocks hecho por Rafa")
|
28 |
+
with gr.Tabs():
|
29 |
+
|
30 |
+
with gr.TabItem("Transcribe Audio en español"):
|
31 |
+
with gr.Row():
|
32 |
+
audio = gr.Audio(source='microphone', type='filepath')
|
33 |
+
transcript = gr.Textbox()
|
34 |
+
b1 = gr.Button("Transcribe")
|
35 |
+
|
36 |
+
with gr.TabItem("Analisis de sentimientos"):
|
37 |
+
with gr.Row():
|
38 |
+
texto = gr.Textbox()
|
39 |
+
label = gr.Label()
|
40 |
+
b2 = gr.Button("Sentimientos")
|
41 |
+
|
42 |
+
b1.click(audio2text, inputs=audio, outputs=transcript)
|
43 |
+
b2.click(text2sentiment, inputs=texto, outputs=label)
|
44 |
+
|
45 |
+
with gr.TabItem("Clasificador de imagenes"):
|
46 |
+
with gr.Row():
|
47 |
+
image = gr.Image(shape=(224, 224))
|
48 |
+
label= gr.Label(num_top_classes=3)
|
49 |
+
bimage= gr.Button("Clasificar")
|
50 |
+
|
51 |
+
bimage.click(classify_imagen, inputs=image, outputs=label)
|
52 |
+
|
53 |
+
demo.launch()
|