Spaces:
Runtime error
Runtime error
blocks
Browse files
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
|
|
3 |
import torch
|
4 |
|
5 |
-
|
|
|
6 |
|
7 |
def yolov7_inference(
|
8 |
image: gr.Image = None,
|
@@ -16,39 +17,27 @@ def yolov7_inference(
|
|
16 |
results = model([image], size=640)
|
17 |
return results.render()[0]
|
18 |
|
19 |
-
|
20 |
-
gr.Image(type="filepath", label="Input"),
|
21 |
-
gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.05, label="Confidence Threshold", interactive=True),
|
22 |
-
]
|
23 |
-
|
24 |
-
outputs = [
|
25 |
-
gr.Image(type="filepath"),
|
26 |
-
|
27 |
-
]
|
28 |
-
|
29 |
-
css = ".output_image {height: 40rem !important; width: 100% !important;}"
|
30 |
-
|
31 |
-
demo = gr.Interface(
|
32 |
-
fn=yolov7_inference,
|
33 |
-
inputs=inputs,
|
34 |
-
outputs=outputs,
|
35 |
-
title="The detection of jar lid defects using Yolov7",
|
36 |
-
description = """
|
37 |
-
This application is detecting damaged jar lids. Type of damages include deformations, holes or scratches. The object detection notebook can be found at <a href="https://www.kaggle.com/rrighart">Kaggle</a>
|
38 |
|
39 |
-
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
""
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
css=css,
|
49 |
-
cache_examples=True,
|
50 |
)
|
51 |
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
demo.
|
54 |
-
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
import torch
|
4 |
|
5 |
+
def update_value(val):
|
6 |
+
return f'Value is set to {val}'
|
7 |
|
8 |
def yolov7_inference(
|
9 |
image: gr.Image = None,
|
|
|
17 |
results = model([image], size=640)
|
18 |
return results.render()[0]
|
19 |
|
20 |
+
demo = gr.Blocks()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
with demo:
|
23 |
|
24 |
+
dd = gr.Interface(
|
25 |
+
yolov7_inference,
|
26 |
+
gr.Image(type="pil"),
|
27 |
+
"image",
|
28 |
+
title="The detection of jar lid defects using Yolov7",
|
29 |
|
30 |
+
examples=[
|
31 |
+
os.path.join(os.path.dirname(__file__), "example1.JPG"),
|
32 |
+
os.path.join(os.path.dirname(__file__), "example2.JPG"),
|
33 |
+
os.path.join(os.path.dirname(__file__), "example3.JPG"),
|
34 |
+
],
|
|
|
|
|
35 |
)
|
36 |
|
37 |
+
md = gr.Markdown("Confidence Threshold")
|
38 |
+
conf_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, label='Value')
|
39 |
+
#inp = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.05, label="Value"),
|
40 |
+
#inp.change(fn=yolov7_inference, inputs=inp, outputs=md)
|
41 |
+
conf_threshold.change(fn=update_value, inputs=conf_threshold, outputs=md)
|
42 |
|
43 |
+
demo.launch()
|
|
slider.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
def update_value(val):
|
4 |
+
return f'Value is set to {val}'
|
5 |
+
|
6 |
+
demo = gr.Blocks()
|
7 |
+
|
8 |
+
with demo:
|
9 |
+
inp = gr.Slider(0, 100, label='Value')
|
10 |
+
md = gr.Markdown('Select a value')
|
11 |
+
|
12 |
+
inp.change(fn=update_value, inputs=inp, outputs=md)
|
13 |
+
|
14 |
+
demo.launch()
|