Spaces:
Runtime error
Runtime error
import streamlit as st | |
import datetime | |
from transformers import pipeline | |
import gradio as gr | |
import tempfile | |
from typing import Optional | |
import numpy as np | |
from TTS.utils.manage import ModelManager | |
from TTS.utils.synthesizer import Synthesizer | |
# PersistDataset ----- | |
import os | |
import csv | |
import gradio as gr | |
from gradio import inputs, outputs | |
import huggingface_hub | |
from huggingface_hub import Repository, hf_hub_download, upload_file | |
from datetime import datetime | |
# created new dataset as awacke1/MindfulStory.csv | |
DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/MindfulStory.csv" | |
DATASET_REPO_ID = "awacke1/MindfulStory.csv" | |
DATA_FILENAME = "MindfulStory.csv" | |
DATA_FILE = os.path.join("data", DATA_FILENAME) | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
# Download dataset repo using hub download | |
try: | |
hf_hub_download( | |
repo_id=DATASET_REPO_ID, | |
filename=DATA_FILENAME, | |
cache_dir=DATA_DIRNAME, | |
force_filename=DATA_FILENAME | |
) | |
except: | |
print("file not found") | |
def AIMemory(name: str, message: str): | |
if name and message: | |
with open(DATA_FILE, "a") as csvfile: | |
writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"]) | |
writer.writerow({"name": name, "message": message, "time": str(datetime.now())}) | |
commit_url = repo.push_to_hub() | |
return {"name": name, "message": message, "time": str(datetime.now())} | |
with open('Mindfulness.txt', 'r') as file: | |
context = file.read() | |
# Set up cloned dataset from repo for operations | |
repo = Repository( local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN) | |
# set up ASR | |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") | |
# set up TTS | |
MODEL_NAMES = [ | |
"en/ljspeech/tacotron2-DDC", | |
"en/ljspeech/glow-tts", | |
"en/ljspeech/speedy-speech-wn", | |
"en/ljspeech/vits", | |
"en/sam/tacotron-DDC", | |
"fr/mai/tacotron2-DDC", | |
"de/thorsten/tacotron2-DCA", | |
] | |
# Use Model Manager to load vocoders | |
MODELS = {} | |
manager = ModelManager() | |
for MODEL_NAME in MODEL_NAMES: | |
print(f"downloading {MODEL_NAME}") | |
model_path, config_path, model_item = manager.download_model(f"tts_models/{MODEL_NAME}") | |
vocoder_name: Optional[str] = model_item["default_vocoder"] | |
vocoder_path = None | |
vocoder_config_path = None | |
if vocoder_name is not None: | |
vocoder_path, vocoder_config_path, _ = manager.download_model(vocoder_name) | |
synthesizer = Synthesizer( | |
model_path, config_path, None, vocoder_path, vocoder_config_path, | |
) | |
MODELS[MODEL_NAME] = synthesizer | |
# transcribe | |
def transcribe(audio): | |
text = asr(audio)["text"] | |
return text | |
#text classifier | |
classifier = pipeline("text-classification") | |
def speech_to_text(speech): | |
text = asr(speech)["text"] | |
#rMem = AIMemory("STT", text) | |
return text | |
def text_to_sentiment(text): | |
sentiment = classifier(text)[0]["label"] | |
#rMem = AIMemory(text, sentiment) | |
return sentiment | |
def upsert(text): | |
date_time =str(datetime.datetime.today()) | |
doc_ref = db.collection('Text2SpeechSentimentSave').document(date_time) | |
doc_ref.set({u'firefield': 'Recognize Speech', u'first': 'https://huggingface.co/spaces/awacke1/TTS-STT-Blocks/', u'last': text, u'born': date_time,}) | |
saved = select('TTS-STT', date_time) | |
return saved | |
def select(collection, document): | |
doc_ref = db.collection(collection).document(document) | |
doc = doc_ref.get() | |
docid = ("The id is: ", doc.id) | |
contents = ("The contents are: ", doc.to_dict()) | |
return contents | |
def selectall(text): | |
docs = db.collection('Text2SpeechSentimentSave').stream() | |
doclist='' | |
for doc in docs: | |
r=(f'{doc.id} => {doc.to_dict()}') | |
doclist += r | |
return doclist | |
def tts(text: str, model_name: str): | |
print(text, model_name) | |
synthesizer = MODELS.get(model_name, None) | |
if synthesizer is None: | |
raise NameError("model not found") | |
wavs = synthesizer.tts(text) | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: | |
synthesizer.save_wav(wavs, fp) | |
#rMem = AIMemory("TTS", text + model_name) | |
return fp.name | |
demo = gr.Blocks() | |
with demo: | |
audio_file = gr.inputs.Audio(source="microphone", type="filepath") | |
text = gr.Textbox(label="Speech to Text") | |
#label = gr.Label() | |
#saved = gr.Textbox(label="Saved") | |
#savedAll = gr.Textbox(label="SavedAll") | |
TTSchoice = gr.inputs.Radio( label="Pick a Text to Speech Model", choices=MODEL_NAMES, ) | |
audio = gr.Audio(label="Output", interactive=False) | |
b1 = gr.Button("Recognize Speech") | |
#b2 = gr.Button("Classify Sentiment") | |
#b3 = gr.Button("Save Speech to Text") | |
#b4 = gr.Button("Retrieve All") | |
b5 = gr.Button("Read It Back Aloud") | |
b1.click(speech_to_text, inputs=audio_file, outputs=text) | |
#b2.click(text_to_sentiment, inputs=text, outputs=label) | |
#b3.click(upsert, inputs=text, outputs=saved) | |
#b4.click(selectall, inputs=text, outputs=savedAll) | |
b5.click(tts, inputs=[text,TTSchoice], outputs=audio) | |
demo.launch(share=True) |