zerogpu / app.py
rphrp1985's picture
Update app.py
71b1f45 verified
raw
history blame
5.99 kB
import gradio as gr
import spaces
import torch
from torch.cuda.amp import autocast
import subprocess
from huggingface_hub import InferenceClient
import os
import psutil
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch
from accelerate import Accelerator
subprocess.run(
"pip install psutil",
shell=True,
)
import bitsandbytes as bnb # Import bitsandbytes for 8-bit quantization
from datetime import datetime
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# pip install 'git+https://github.com/huggingface/transformers.git'
token=os.getenv('token')
print('token = ',token)
from transformers import AutoModelForCausalLM, AutoTokenizer
# model_id = "mistralai/Mistral-7B-v0.3"
model_id = "microsoft/Phi-3-medium-4k-instruct"
# model_id = "Qwen/Qwen2-7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(
# model_id
model_id,
# use_fast=False
token= token,
trust_remote_code=True)
accelerator = Accelerator()
model = AutoModelForCausalLM.from_pretrained(model_id, token= token,
# torch_dtype= torch.uint8,
torch_dtype=torch.bfloat16,
# load_in_8bit=True,
# # # torch_dtype=torch.fl,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
trust_remote_code=True,
device_map='cuda',
# device_map=accelerator.device_map,
)
#
model = accelerator.prepare(model)
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
# device_map = infer_auto_device_map(model, max_memory={0: "79GB", "cpu":"65GB" })
# Load the model with the inferred device map
# model = load_checkpoint_and_dispatch(model, model_id, device_map=device_map, no_split_module_classes=["GPTJBlock"])
# model.half()
import json
def str_to_json(str_obj):
json_obj = json.loads(str_obj)
return json_obj
@spaces.GPU(duration=90)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# yield 'retuend'
# model.to(accelerator.device)
messages = []
json_obj = str_to_json(message)
print(json_obj)
messages= json_obj
# input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(accelerator.device)
# input_ids2 = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") #.to('cuda')
# print(f"Converted input_ids dtype: {input_ids.dtype}")
# input_str= str(input_ids2)
# print('input str = ', input_str)
generation_args = {
"max_new_tokens": max_tokens,
"return_full_text": False,
"temperature": temperature,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
gen_text=output[0]['generated_text']
# with torch.no_grad():
# gen_tokens = model.generate(
# input_ids,
# max_new_tokens=max_tokens,
# # do_sample=True,
# temperature=temperature,
# )
# gen_text = tokenizer.decode(gen_tokens[0])
# print(gen_text)
# gen_text= gen_text.replace(input_str,'')
# gen_text= gen_text.replace('<|im_end|>','')
yield gen_text
# messages = [
# # {"role": "user", "content": "What is your favourite condiment?"},
# # {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
# # {"role": "user", "content": "Do you have mayonnaise recipes?"}
# ]
# inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
# outputs = model.generate(inputs, max_new_tokens=2000)
# gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
# print(gen_text)
# yield gen_text
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()