Update app.py
Browse files
app.py
CHANGED
@@ -16,6 +16,10 @@ print('token = ',token)
|
|
16 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
17 |
|
18 |
model_id = "mistralai/Mistral-7B-v0.3"
|
|
|
|
|
|
|
|
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token= token)
|
20 |
|
21 |
model = AutoModelForCausalLM.from_pretrained(model_id, token= token)
|
@@ -32,9 +36,15 @@ def respond(
|
|
32 |
temperature,
|
33 |
top_p,
|
34 |
):
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
outputs = model.generate(
|
38 |
gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
|
40 |
print(gen_text)
|
|
|
16 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
17 |
|
18 |
model_id = "mistralai/Mistral-7B-v0.3"
|
19 |
+
|
20 |
+
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
21 |
+
|
22 |
+
|
23 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token= token)
|
24 |
|
25 |
model = AutoModelForCausalLM.from_pretrained(model_id, token= token)
|
|
|
36 |
temperature,
|
37 |
top_p,
|
38 |
):
|
39 |
+
messages = [
|
40 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
41 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
42 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
43 |
+
]
|
44 |
+
|
45 |
+
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
46 |
|
47 |
+
outputs = model.generate(inputs, max_new_tokens=20)
|
48 |
gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
|
49 |
|
50 |
print(gen_text)
|