|
import gradio as gr |
|
import spaces |
|
import torch |
|
|
|
from huggingface_hub import InferenceClient |
|
import os |
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
|
|
|
|
|
|
token=os.getenv('token') |
|
print('token = ',token) |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_id = "mistralai/Mistral-7B-v0.3" |
|
|
|
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" |
|
|
|
|
|
|
|
|
|
@spaces.GPU(duration=180) |
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, token= token) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, token= token, torch_dtype=torch.bfloat16,attn_implementation="flash_attention_2",) |
|
|
|
|
|
messages = [ |
|
{"role": "user", "content": "What is your favourite condiment?"}, |
|
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, |
|
{"role": "user", "content": "Do you have mayonnaise recipes?"} |
|
] |
|
|
|
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(inputs, max_new_tokens=2000) |
|
gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
print(gen_text) |
|
yield gen_text |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |