Spaces:
Sleeping
Sleeping
Create gradio.py
Browse files
gradio.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
def TextProcessor(txt):
|
4 |
+
# ASCII code greater than 122 will be zh
|
5 |
+
if ord(str(txt)[0]) > 122:
|
6 |
+
# convert to zh_sim
|
7 |
+
sim_text = jio.tra2sim(txt, mode='char')
|
8 |
+
zh2en_trans = pipeline("translation_zh_to_en", model = model, tokenizer = tokenizer)
|
9 |
+
results = zh2en_trans(sim_text)[0]['translation_text']
|
10 |
+
# ASCII code less than 122 will be en
|
11 |
+
else:
|
12 |
+
# if length greater than 1, sentences; otherwise, words
|
13 |
+
if len(txt.split()) < 2:
|
14 |
+
blob = TextBlob(txt)
|
15 |
+
POS_List = blob.tags
|
16 |
+
results = POS_List[0][1]
|
17 |
+
else:
|
18 |
+
# if txt contains ..., do text generation; otherwise do summary, NER, noun and verb phrases
|
19 |
+
if "..." in str(txt):
|
20 |
+
txt = str(txt)
|
21 |
+
text = txt[0:-3]
|
22 |
+
txt_generation = generator(text, max_length = 50, num_return_sequences = 1)
|
23 |
+
results = txt_generation[0]["generated_text"]
|
24 |
+
else:
|
25 |
+
txt = str(txt)
|
26 |
+
txt_summarization = summarizer(txt)
|
27 |
+
result_01 = txt_summarization[0]
|
28 |
+
|
29 |
+
result_02 = ner(txt)
|
30 |
+
|
31 |
+
blob = TextBlob(txt)
|
32 |
+
POS_List = blob.tags
|
33 |
+
|
34 |
+
noun_phrases = [np for np in POS_List if "N" in np[1][0]]
|
35 |
+
result_03 = noun_phrases
|
36 |
+
|
37 |
+
verb_phrases = [vp for vp in POS_List if "V" in vp[1][0]]
|
38 |
+
result_04 = verb_phrases
|
39 |
+
results = ("Summary:", result_01['summary_text'], "NER:", result_02, "noun_phrases:", result_03, "verb_phrases:", result_04)
|
40 |
+
|
41 |
+
return results
|
42 |
+
|
43 |
+
final = gr.Interface(fn = TextProcessor, inputs = "text", outputs = "text")
|
44 |
+
final.launch()
|