roxas010394 commited on
Commit
9ac55f5
1 Parent(s): 1e4d149
Files changed (1) hide show
  1. app.py +32 -0
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ultralytics import YOLO
2
+ import matplotlib.pyplot as plt
3
+ import gradio as gr
4
+ import cv2
5
+
6
+ import seaborn as sns
7
+
8
+ def predict(path:str):
9
+ model = YOLO("yolov8n.yaml")
10
+ model = YOLO("best.pt")
11
+ image = cv2.imread(path)
12
+
13
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
14
+ results = model.predict(source=path)
15
+ paleta= sns.color_palette("bright", 17)
16
+ fig = plt.figure()
17
+ vectObjs = results[0].masks.xy
18
+ resNumClase = results[0].boxes.cls.numpy().astype(int)
19
+ conf = results[0].boxes.conf.numpy()
20
+ for i in range(len(vectObjs)):
21
+ objDet = vectObjs[i].astype(int)
22
+ color = (paleta[i][0]*255, paleta[i][1]*255, paleta[i][2]*255)
23
+ image = cv2.polylines(image, [objDet], True, color, 4)
24
+ plt.text(objDet[0][0], objDet[0][1], results[0].names[resNumClase[i]]+" "+ str(conf[i]), bbox=dict(facecolor=paleta[i], alpha=0.5))
25
+
26
+ plt.imshow(image)
27
+ plt.axis('off')
28
+ return plt
29
+ gr.Interface(fn=predict,
30
+ inputs=gr.components.Image(type="filepath", label="Input"),
31
+ outputs=gr.Plot(label="Resultado de detección de objetos con regularizacion")).launch()
32
+ #outputs=gr.components.Image(type="pil", label="Output")).launch()