roubaofeipi commited on
Commit
9171659
1 Parent(s): 737c15e

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -190
app.py DELETED
@@ -1,190 +0,0 @@
1
- import os
2
- import yaml
3
- import torch
4
- import sys
5
- sys.path.append(os.path.abspath('./'))
6
- from inference.utils import *
7
- from train import WurstCoreB
8
- from gdf import DDPMSampler
9
- from train import WurstCore_t2i as WurstCoreC
10
- import numpy as np
11
- import random
12
- import argparse
13
- import gradio as gr
14
-
15
-
16
- def parse_args():
17
- parser = argparse.ArgumentParser()
18
- parser.add_argument( '--height', type=int, default=2560, help='image height')
19
- parser.add_argument('--width', type=int, default=5120, help='image width')
20
- parser.add_argument('--seed', type=int, default=123, help='random seed')
21
- parser.add_argument('--dtype', type=str, default='bf16', help=' if bf16 does not work, change it to float32 ')
22
- parser.add_argument('--config_c', type=str,
23
- default='configs/training/t2i.yaml' ,help='config file for stage c, latent generation')
24
- parser.add_argument('--config_b', type=str,
25
- default='configs/inference/stage_b_1b.yaml' ,help='config file for stage b, latent decoding')
26
- parser.add_argument( '--prompt', type=str,
27
- default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
28
- parser.add_argument( '--num_image', type=int, default=1, help='how many images generated')
29
- parser.add_argument( '--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
30
- parser.add_argument( '--stage_a_tiled', action='store_true', help='whther or nor to use tiled decoding for stage a to save memory')
31
- parser.add_argument( '--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added paramter of UltraPixel')
32
- args = parser.parse_args()
33
- return args
34
-
35
- def clear_image():
36
- return None
37
- def load_message(height, width, seed, prompt, args, stage_a_tiled):
38
- args.height = height
39
- args.width = width
40
- args.seed = seed
41
- args.prompt = prompt + ' rich detail, 4k, high quality'
42
- args.stage_a_tiled = stage_a_tiled
43
- return args
44
- def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
45
- global args
46
- args = load_message(height, width, seed, prompt, args, stage_a_tiled)
47
- torch.manual_seed(args.seed)
48
- random.seed(args.seed)
49
- np.random.seed(args.seed)
50
- dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
51
-
52
- captions = [args.prompt] * args.num_image
53
- height, width = args.height, args.width
54
- batch_size=1
55
- height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
56
- stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
57
- stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
58
-
59
- # Stage C Parameters
60
- extras.sampling_configs['cfg'] = 4
61
- extras.sampling_configs['shift'] = 1
62
- extras.sampling_configs['timesteps'] = 20
63
- extras.sampling_configs['t_start'] = 1.0
64
- extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
65
-
66
-
67
-
68
- # Stage B Parameters
69
- extras_b.sampling_configs['cfg'] = 1.1
70
- extras_b.sampling_configs['shift'] = 1
71
- extras_b.sampling_configs['timesteps'] = 10
72
- extras_b.sampling_configs['t_start'] = 1.0
73
-
74
- for _, caption in enumerate(captions):
75
-
76
-
77
- batch = {'captions': [caption] * batch_size}
78
- #conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
79
- #unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
80
-
81
- conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
82
- unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
83
-
84
-
85
- with torch.no_grad():
86
-
87
-
88
- models.generator.cuda()
89
- print('STAGE C GENERATION***************************')
90
- with torch.cuda.amp.autocast(dtype=dtype):
91
- sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
92
-
93
-
94
-
95
- models.generator.cpu()
96
- torch.cuda.empty_cache()
97
-
98
- conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
99
- unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
100
- conditions_b['effnet'] = sampled_c
101
- unconditions_b['effnet'] = torch.zeros_like(sampled_c)
102
- print('STAGE B + A DECODING***************************')
103
-
104
- with torch.cuda.amp.autocast(dtype=dtype):
105
- sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
106
-
107
- torch.cuda.empty_cache()
108
- imgs = show_images(sampled)
109
- #for idx, img in enumerate(imgs):
110
- #print(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'), idx)
111
- #img.save(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'))
112
-
113
- return imgs[0]
114
- #print('finished! Results ')
115
-
116
-
117
- with gr.Blocks() as demo:
118
- with gr.Column():
119
- with gr.Row():
120
- with gr.Column():
121
- height = gr.Slider(value=2304, step=32, minimum=1536, maximum=4096, label='Height')
122
- width = gr.Slider(value=4096, step=32, minimum=1536, maximum=5120, label='Width')
123
- seed = gr.Number(value=123, step=1, label='Random Seed')
124
- prompt = gr.Textbox(value='', max_lines=4, label='Text Prompt')
125
- cfg = gr.Slider(value=4, step=0.1, minimum=3, maximum=10, label='CFG')
126
- timesteps = gr.Slider(value=20, step=1, minimum=10, maximum=50, label='Timesteps')
127
- stage_a_tiled = gr.Checkbox(value=False, label='Stage_a_tiled')
128
- with gr.Row():
129
- clear_button = gr.Button("Clear!")
130
- polish_button = gr.Button("Submit!")
131
- with gr.Column():
132
- output_img = gr.Image(label='Output Image', sources=None)
133
- with gr.Column():
134
- prompt2 = gr.Textbox(
135
- value='''
136
- 1. a happy cat
137
- 2. a happy girl
138
- ''', label='Text prompt examples'
139
- )
140
-
141
- polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img)
142
- polish_button.click(clear_image, inputs=[], outputs=output_img)
143
-
144
- if __name__ == "__main__":
145
-
146
- args = parse_args()
147
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
148
-
149
- config_file = args.config_c
150
- with open(config_file, "r", encoding="utf-8") as file:
151
- loaded_config = yaml.safe_load(file)
152
-
153
- core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
154
-
155
- # SETUP STAGE B
156
- config_file_b = args.config_b
157
- with open(config_file_b, "r", encoding="utf-8") as file:
158
- config_file_b = yaml.safe_load(file)
159
-
160
- core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
161
-
162
- extras = core.setup_extras_pre()
163
- models = core.setup_models(extras)
164
- models.generator.eval().requires_grad_(False)
165
- print("STAGE C READY")
166
-
167
- extras_b = core_b.setup_extras_pre()
168
- models_b = core_b.setup_models(extras_b, skip_clip=True)
169
- models_b = WurstCoreB.Models(
170
- **{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
171
- )
172
- models_b.generator.bfloat16().eval().requires_grad_(False)
173
- print("STAGE B READY")
174
-
175
- pretrained_path = args.pretrained_path
176
- sdd = torch.load(pretrained_path, map_location='cpu')
177
- collect_sd = {}
178
- for k, v in sdd.items():
179
- collect_sd[k[7:]] = v
180
-
181
- models.train_norm.load_state_dict(collect_sd)
182
- models.generator.eval()
183
- models.train_norm.eval()
184
-
185
-
186
- demo.launch(
187
- debug=True, share=True,
188
-
189
-
190
- )