Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
class SimpleSampler(): | |
def __init__(self, gdf): | |
self.gdf = gdf | |
self.current_step = -1 | |
def __call__(self, *args, **kwargs): | |
self.current_step += 1 | |
return self.step(*args, **kwargs) | |
def init_x(self, shape): | |
return torch.randn(*shape) | |
def step(self, x, x0, epsilon, logSNR, logSNR_prev): | |
raise NotImplementedError("You should override the 'apply' function.") | |
class DDIMSampler(SimpleSampler): | |
def step(self, x, x0, epsilon, logSNR, logSNR_prev, eta=0): | |
a, b = self.gdf.input_scaler(logSNR) | |
if len(a.shape) == 1: | |
a, b = a.view(-1, *[1]*(len(x0.shape)-1)), b.view(-1, *[1]*(len(x0.shape)-1)) | |
a_prev, b_prev = self.gdf.input_scaler(logSNR_prev) | |
if len(a_prev.shape) == 1: | |
a_prev, b_prev = a_prev.view(-1, *[1]*(len(x0.shape)-1)), b_prev.view(-1, *[1]*(len(x0.shape)-1)) | |
sigma_tau = eta * (b_prev**2 / b**2).sqrt() * (1 - a**2 / a_prev**2).sqrt() if eta > 0 else 0 | |
# x = a_prev * x0 + (1 - a_prev**2 - sigma_tau ** 2).sqrt() * epsilon + sigma_tau * torch.randn_like(x0) | |
x = a_prev * x0 + (b_prev**2 - sigma_tau**2).sqrt() * epsilon + sigma_tau * torch.randn_like(x0) | |
return x | |
class DDPMSampler(DDIMSampler): | |
def step(self, x, x0, epsilon, logSNR, logSNR_prev, eta=1): | |
return super().step(x, x0, epsilon, logSNR, logSNR_prev, eta) | |
class LCMSampler(SimpleSampler): | |
def step(self, x, x0, epsilon, logSNR, logSNR_prev): | |
a_prev, b_prev = self.gdf.input_scaler(logSNR_prev) | |
if len(a_prev.shape) == 1: | |
a_prev, b_prev = a_prev.view(-1, *[1]*(len(x0.shape)-1)), b_prev.view(-1, *[1]*(len(x0.shape)-1)) | |
return x0 * a_prev + torch.randn_like(epsilon) * b_prev | |