Spaces:
Running
on
Zero
Running
on
Zero
# Pidinet | |
# https://github.com/hellozhuo/pidinet | |
import os | |
import torch | |
import numpy as np | |
from einops import rearrange | |
from .model import pidinet | |
from .util import annotator_ckpts_path, safe_step | |
class PidiNetDetector: | |
def __init__(self, device): | |
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/table5_pidinet.pth" | |
modelpath = os.path.join(annotator_ckpts_path, "table5_pidinet.pth") | |
if not os.path.exists(modelpath): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) | |
self.netNetwork = pidinet() | |
self.netNetwork.load_state_dict( | |
{k.replace('module.', ''): v for k, v in torch.load(modelpath)['state_dict'].items()}) | |
self.netNetwork.to(device).eval().requires_grad_(False) | |
def __call__(self, input_image): # , safe=False): | |
return self.netNetwork(input_image)[-1] | |
# assert input_image.ndim == 3 | |
# input_image = input_image[:, :, ::-1].copy() | |
# with torch.no_grad(): | |
# image_pidi = torch.from_numpy(input_image).float().cuda() | |
# image_pidi = image_pidi / 255.0 | |
# image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w') | |
# edge = self.netNetwork(image_pidi)[-1] | |
# if safe: | |
# edge = safe_step(edge) | |
# edge = (edge * 255.0).clip(0, 255).astype(np.uint8) | |
# return edge[0][0] | |