Spaces:
Sleeping
Sleeping
| import torch | |
| import numpy as np | |
| # | |
| # | |
| # GKXWC1: 2D objective, 1 constraints | |
| # | |
| # Reference: | |
| # Gardner JR, Kusner MJ, Xu ZE, et al (2014) | |
| # Bayesian optimization with inequality con- | |
| # straints. In: ICML, pp 937–945 | |
| # | |
| # | |
| def GKXWC1(individuals): | |
| assert torch.is_tensor(individuals) and individuals.size(1) == 2, "Input must be an n-by-2 PyTorch tensor." | |
| fx = [] | |
| gx = [] | |
| for x in individuals: | |
| g = np.cos(x[0])*np.cos(x[1]) - np.sin(x[0])*np.sin(x[1]) -0.5 | |
| fx.append( - np.cos(2*x[0])*np.cos(x[1]) - np.sin(x[0]) ) | |
| gx.append( g ) | |
| fx = torch.tensor(fx) | |
| fx = torch.reshape(fx, (len(fx),1)) | |
| gx = torch.tensor(gx) | |
| gx = torch.reshape(gx, (len(gx),1)) | |
| return gx, fx | |
| def GKXWC1_Scaling(X): | |
| assert torch.is_tensor(X) and X.size(1) == 2, "Input must be an n-by-2 PyTorch tensor." | |
| X_scaled = X*6; | |
| return X_scaled | |