Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from botorch.test_functions.synthetic import DixonPrice | |
device = torch.device("cpu") | |
dtype = torch.double | |
def DixonPriceND(individuals): | |
# assert torch.is_tensor(individuals) and individuals.size(1) == 10, "Input must be an n-by-10 PyTorch tensor." | |
############################################################################# | |
############################################################################# | |
# Set function here: | |
dimm = individuals.shape[1] | |
fun = DixonPrice(dim=dimm, negate=True) | |
fun.bounds[0, :].fill_(-10.0) | |
fun.bounds[1, :].fill_(10.0) | |
dim = fun.dim | |
lb, ub = fun.bounds | |
############################################################################# | |
############################################################################# | |
n = individuals.size(0) | |
fx = fun(individuals) | |
fx = fx.reshape((n, 1)) | |
############################################################################# | |
## Constraints | |
# gx1 = torch.sum(individuals,1) # sigma(x) <= 0 | |
# gx1 = gx1.reshape((n, 1)) | |
# gx2 = torch.norm(individuals, p=2, dim=1)-5 # norm_2(x) -3 <= 0 | |
# gx2 = gx2.reshape((n, 1)) | |
# gx = torch.cat((gx1, gx2), 1) | |
############################################################################# | |
return 0, fx | |
# return gx, fx | |
def DixonPriceND_Scaling(X): | |
# assert torch.is_tensor(X) and X.size(1) == 10, "Input must be an n-by-10 PyTorch tensor." | |
X_scaled = X*20-10 | |
return X_scaled | |