rosenyu's picture
Upload 529 files
165ee00 verified
from __future__ import annotations
import random
from collections import OrderedDict
import torch
from .. import utils
from ..priors.hebo_prior import Warp
from gpytorch.priors import LogNormalPrior
# from botorch.optim import module_to_array, set_params_with_array
# from .. import module_to_array, set_params_with_array
import scipy
from scipy.optimize import Bounds
from typing import OrderedDict
import numpy as np
from functools import partial
device = 'cpu'
def fit_lbfgs(x, w, nll, num_grad_steps=10, ignore_prior=True, params0=None):
bounds_ = {}
if hasattr(w, "named_parameters_and_constraints"):
for param_name, _, constraint in w.named_parameters_and_constraints():
if constraint is not None and not constraint.enforced:
bounds_[param_name] = constraint.lower_bound, constraint.upper_bound
params0_, property_dict, bounds_ = module_to_array(
module=w, bounds=bounds_, exclude=None
)
if params0 is None: params0 = params0_
bounds = Bounds(lb=bounds_[0], ub=bounds_[1], keep_feasible=True)
def loss_f(params, w):
w = set_params_with_array(w, params, property_dict)
w.requires_grad_(True)
loss = 0.
if not ignore_prior:
for name, module, prior, closure, _ in w.named_priors():
prior_term = prior.log_prob(closure(module))
loss -= prior_term.sum(dim=-1)
negll = nll(w(x.to(torch.float64)).to(torch.float)).sum()
#if loss != 0.:
# print(loss.item(), negll.item())
loss = loss + negll
return w, loss
def opt_f(params, w):
w, loss = loss_f(params, w)
w.zero_grad()
loss.backward()
grad = []
param_dict = OrderedDict(w.named_parameters())
for p_name in property_dict:
t = param_dict[p_name].grad
if t is None:
# this deals with parameters that do not affect the loss
grad.append(np.zeros(property_dict[p_name].shape.numel()))
else:
grad.append(t.detach().view(-1).cpu().double().clone().numpy())
w.zero_grad()
# print(neg_mean_acq.detach().numpy(), x_eval.grad.detach().view(*x.shape).numpy())
return loss.item(), np.concatenate(grad)
if num_grad_steps:
return scipy.optimize.minimize(partial(opt_f, w=w), params0, method='L-BFGS-B', jac=True, bounds=bounds,
options={'maxiter': num_grad_steps})
else:
with torch.no_grad():
return loss_f(params0, w), params0
def log_vs_nonlog(x, w, *args, **kwargs):
if "true_nll" in kwargs:
true_nll = kwargs["true_nll"]
del kwargs["true_nll"]
else:
true_nll = None
params, property_dict, _ = module_to_array(module=w)
no_log = np.ones_like(params)
log = np.array([1.9, 0.11] * (int(len(property_dict) / 2)))
loss_no_log = fit_lbfgs(x, w, *args, **{**kwargs, 'num_grad_steps': 0}, params0=no_log)
loss_log = fit_lbfgs(x, w, *args, **{**kwargs, 'num_grad_steps': 0}, params0=log)
print("loss no log", loss_no_log[0][1], "loss log", loss_log[0][1])
if loss_no_log[0][1] < loss_log[0][1]:
set_params_with_array(module=w, x=loss_no_log[1], property_dict=property_dict)
if true_nll:
best_params, _, _ = module_to_array(module=w)
print("true nll", fit_lbfgs(x, w, true_nll, **{**kwargs, 'num_grad_steps': 0}, params0=best_params))
def fit_lbfgs_with_restarts(x, w, *args, old_solution=None, rs_size=50, **kwargs):
if "true_nll" in kwargs:
true_nll = kwargs["true_nll"]
del kwargs["true_nll"]
else:
true_nll = None
rs_results = []
if old_solution:
rs_results.append(fit_lbfgs(x, old_solution, *args, **{**kwargs, 'num_grad_steps': 0}))
for i in range(rs_size):
with torch.no_grad():
w.concentration0[:] = w.concentration0_prior()
w.concentration1[:] = w.concentration1_prior()
rs_results.append(fit_lbfgs(x, w, *args, **{**kwargs, 'num_grad_steps': 0}))
best_r = min(rs_results, key=lambda r: r[0][1])
print('best r', best_r)
with torch.set_grad_enabled(True):
r = fit_lbfgs(x, w, *args, **kwargs, params0=best_r[1])
_, property_dict, _ = module_to_array(module=w)
set_params_with_array(module=w, x=r.x, property_dict=property_dict)
print('final r', r)
if true_nll:
print("true nll", fit_lbfgs(x, w, true_nll, **{**kwargs, 'num_grad_steps': 0}, params0=r.x))
return r
# use seed 0 for sampling indices, and reset seed afterwards
old_seed = random.getstate()
random.seed(0)
one_out_indices_sampled_per_num_obs = [None]+[random.sample(range(i), min(10, i)) for i in range(1, 100)]
random.setstate(old_seed)
# use seed 0 for sampling subsets
old_seed = random.getstate()
random.seed(0)
subsets = [None]+[[random.sample(range(i), i//2) for _ in range(10)] for i in range(1, 100)]
neg_subsets = [None]+[[list(set(range(i)) - set(s)) for s in ss] for i, ss in enumerate(subsets[1:], 1)]
random.setstate(old_seed)
def fit_input_warping(model, x, y, nll_type='fast', old_solution=None, opt_method="lbfgs", **kwargs):
"""
:param model:
:param x: shape (n, d)
:param y: shape (n, 1)
:param nll_type:
:param kwargs: Possible kwargs: `num_grad_steps`, `rs_size`
:return:
"""
device = x.device
assert y.device == device, y.device
model.requires_grad_(False)
w = Warp(range(x.shape[1]),
concentration1_prior=LogNormalPrior(torch.tensor(0.0, device=device), torch.tensor(.75, device=device)),
concentration0_prior=LogNormalPrior(torch.tensor(0.0, device=device), torch.tensor(.75, device=device)),
eps=1e-12)
w.to(device)
def fast_nll(x): # noqa actually used with `eval` below
model.requires_grad_(False)
if model.style_encoder is not None:
style = torch.zeros(1, 1, dtype=torch.int64, device=device)
utils.print_once("WARNING: using style 0 for input warping, this is set for nonmyopic BO setting.")
else:
style = None
logits = model(x[:, None], y[:, None], x[:, None], style=style, only_return_standard_out=True)
loss = model.criterion(logits, y[:, None]).squeeze(1)
return loss
def true_nll(x): # noqa actually used with `eval` below
assert model.style_encoder is None, "true nll not implemented for style encoder, see above for an example impl"
model.requires_grad_(False)
total_nll = 0.
for cutoff in range(len(x)):
logits = model(x[:cutoff, None], y[:cutoff, None], x[cutoff:cutoff + 1, None])
total_nll = total_nll + model.criterion(logits, y[cutoff:cutoff + 1, None]).squeeze()
assert len(total_nll.shape) == 0, f"{total_nll.shape=}"
return total_nll
def repeated_true_nll(x): # noqa actually used with `eval` below
assert model.style_encoder is None, "true nll not implemented for style encoder, see above for an example impl"
model.requires_grad_(False)
total_nll = 0.
for i in range(5):
rs = np.random.RandomState(i)
shuffle_idx = rs.permutation(len(x))
x_ = x.clone()[shuffle_idx]
y_ = y.clone()[shuffle_idx]
for cutoff in range(len(x)):
logits = model(x_[:cutoff, None], y_[:cutoff, None], x_[cutoff:cutoff + 1, None])
total_nll = total_nll + model.criterion(logits, y_[cutoff:cutoff + 1, None]).squeeze()
assert len(total_nll.shape) == 0, f"{total_nll.shape=}"
return total_nll
def repeated_true_100_nll(x): # noqa actually used with `eval` below
assert model.style_encoder is None, "true nll not implemented for style encoder, see above for an example impl"
model.requires_grad_(False)
total_nll = 0.
for i in range(100):
rs = np.random.RandomState(i)
shuffle_idx = rs.permutation(len(x))
x_ = x.clone()[shuffle_idx]
y_ = y.clone()[shuffle_idx]
for cutoff in range(len(x)):
logits = model(x_[:cutoff, None], y_[:cutoff, None], x_[cutoff:cutoff + 1, None])
total_nll = total_nll + model.criterion(logits, y_[cutoff:cutoff + 1, None]).squeeze()
assert len(total_nll.shape) == 0, f"{total_nll.shape=}"
return total_nll / 100
def batched_repeated_chunked_true_nll(x): # noqa actually used with `eval` below
assert model.style_encoder is None, "true nll not implemented for style encoder, see above for an example impl"
assert len(x.shape) == 2 and len(y.shape) == 1
model.requires_grad_(False)
n_features = x.shape[1] if len(x.shape) > 1 else 1
batch_size = 10
X = []
Y = []
for i in range(batch_size):
#if i == 0:
# shuffle_idx = list(range(len(x)))
#else:
rs = np.random.RandomState(i)
shuffle_idx = rs.permutation(len(x))
X.append(x.clone()[shuffle_idx])
Y.append(y.clone()[shuffle_idx])
X = torch.stack(X, dim=1).view((x.shape[0], batch_size, n_features))
Y = torch.stack(Y, dim=1).view((x.shape[0], batch_size, 1))
total_nll = 0.
batch_indizes = sorted(list(set(np.linspace(0, len(x), 10, dtype=int))))
for chunk_start, chunk_end in zip(batch_indizes[:-1], batch_indizes[1:]):
X_cutoff = X[:chunk_start]
Y_cutoff = Y[:chunk_start]
X_after_cutoff = X[chunk_start:chunk_end]
Y_after_cutoff = Y[chunk_start:chunk_end]
pending_x = X_after_cutoff.reshape(X_after_cutoff.shape[0], batch_size, n_features) # n_pen x batch_size x n_feat
observed_x = X_cutoff.reshape(X_cutoff.shape[0], batch_size, n_features) # n_obs x batch_size x n_feat
X_tmp = torch.cat((observed_x, pending_x), dim=0) # (n_obs+n_pen) x batch_size x n_feat
logits = model((X_tmp, Y_cutoff), single_eval_pos=int(chunk_start))
total_nll = total_nll + model.criterion(logits, Y_after_cutoff).sum()
assert len(total_nll.shape) == 0, f"{total_nll.shape=}"
return total_nll
def batched_repeated_true_nll(x): # noqa actually used with `eval` below
assert model.style_encoder is None, "true nll not implemented for style encoder, see above for an example impl"
model.requires_grad_(False)
n_features = x.shape[1] if len(x.shape) > 1 else 1
batch_size = 10
X = []
Y = []
for i in range(batch_size):
#if i == 0:
# shuffle_idx = list(range(len(x)))
#else:
rs = np.random.RandomState(i)
shuffle_idx = rs.permutation(len(x))
X.append(x.clone()[shuffle_idx])
Y.append(y.clone()[shuffle_idx])
X = torch.cat(X, dim=1).reshape((x.shape[0], batch_size, n_features))
Y = torch.cat(Y, dim=1).reshape((x.shape[0], batch_size, 1))
total_nll = 0.
for cutoff in range(0, len(x)):
X_cutoff = X[:cutoff]
Y_cutoff = Y[:cutoff]
X_after_cutoff = X[cutoff:cutoff+1]
Y_after_cutoff = Y[cutoff:cutoff+1]
pending_x = X_after_cutoff.reshape(X_after_cutoff.shape[0], batch_size, n_features) # n_pen x batch_size x n_feat
observed_x = X_cutoff.reshape(X_cutoff.shape[0], batch_size, n_features) # n_obs x batch_size x n_feat
X_tmp = torch.cat((observed_x, pending_x), dim=0) # (n_obs+n_pen) x batch_size x n_feat
pad_y = torch.zeros((X_after_cutoff.shape[0], batch_size, 1)) # (n_obs+n_pen) x batch_size
Y_tmp = torch.cat((Y_cutoff, pad_y), dim=0)
logits = model((X_tmp, Y_tmp), single_eval_pos=cutoff)
total_nll = total_nll + model.criterion(logits, Y_after_cutoff).sum()
assert len(total_nll.shape) == 0, f"{total_nll.shape=}"
return total_nll
def one_out_nll(x): # noqa actually used with `eval` below
assert model.style_encoder is None, "one out nll not implemented for style encoder, see above for an example impl"
# x shape: (n, d)
# iterate over a pre-defined set of
model.requires_grad_(False)
#indices = one_out_indices_sampled_per_num_obs[len(x)]
indices = list(range(x.shape[0]))
# create batch by moving the one out index to the end
eval_x = x[indices][None] # shape (1, 10, d)
eval_y = y[indices][None] # shape (1, 10, 1)
# all other indices are used for training
train_x = torch.stack([torch.cat([x[:i], x[i + 1:]]) for i in indices], 1)
train_y = torch.stack([torch.cat([y[:i], y[i + 1:]]) for i in indices], 1)
logits = model(train_x, train_y, eval_x)
return model.criterion(logits, eval_y).squeeze(0)
def subset_nll(x): # noqa actually used with `eval` below
assert model.style_encoder is None, "subset nll not implemented for style encoder, see above for an example impl"
# x shape: (n, d)
# iterate over a pre-defined set of
model.requires_grad_(False)
eval_indices = torch.tensor(subsets[len(x)])
train_indices = torch.tensor(neg_subsets[len(x)])
# batch by using all eval_indices
eval_x = x[eval_indices.flatten()].view(eval_indices.shape + (-1,)) # shape (10, n//2, d)
eval_y = y[eval_indices.flatten()].view(eval_indices.shape + (-1,)) # shape (10, n//2, 1)
# all other indices are used for training
train_x = x[train_indices.flatten()].view(train_indices.shape + (-1,)) # shape (10, n//2, d)
train_y = y[train_indices.flatten()].view(train_indices.shape + (-1,)) # shape (10, n//2, 1)
logits = model(train_x.transpose(0, 1), train_y.transpose(0, 1), eval_x.transpose(0, 1))
return model.criterion(logits, eval_y.transpose(0, 1))
if opt_method == "log_vs_nolog":
log_vs_nonlog(x, w, eval(nll_type + '_nll'),
ignore_prior=True, # true_nll=repeated_true_100_nll,
**kwargs)
elif opt_method == "lbfgs":
fit_lbfgs_with_restarts(
x, w, eval(nll_type + '_nll'),
ignore_prior=True, old_solution=old_solution, # true_nll=repeated_true_100_nll,
**kwargs)
elif opt_method == "lbfgs_w_prior":
fit_lbfgs_with_restarts(
x, w, eval(nll_type + '_nll'),
ignore_prior=False, old_solution=old_solution, # true_nll=repeated_true_100_nll,
**kwargs)
else:
raise ValueError(opt_method)
return w
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
r"""
A converter that simplifies using numpy-based optimizers with generic torch
`nn.Module` classes. This enables using a `scipy.optim.minimize` optimizer
for optimizing module parameters.
"""
from collections import OrderedDict
from math import inf
from numbers import Number
from typing import Dict, List, Optional, Set, Tuple
from warnings import warn
import numpy as np
import torch
from botorch.optim.utils import (
_get_extra_mll_args,
_handle_numerical_errors,
get_name_filter,
get_parameters_and_bounds,
TorchAttr,
)
from gpytorch.mlls import MarginalLogLikelihood
from torch.nn import Module
def module_to_array(
module: Module,
bounds: Optional[Dict[str, Tuple[Optional[float], Optional[float]]]] = None,
exclude: Optional[Set[str]] = None,
) -> Tuple[np.ndarray, Dict[str, TorchAttr], Optional[np.ndarray]]:
r"""Extract named parameters from a module into a numpy array.
Only extracts parameters with requires_grad, since it is meant for optimizing.
Args:
module: A module with parameters. May specify parameter constraints in
a `named_parameters_and_constraints` method.
bounds: A dictionary mapping parameter names t lower and upper bounds.
of lower and upper bounds. Bounds specified here take precedence
over bounds on the same parameters specified in the constraints
registered with the module.
exclude: A list of parameter names that are to be excluded from extraction.
Returns:
3-element tuple containing
- The parameter values as a numpy array.
- An ordered dictionary with the name and tensor attributes of each
parameter.
- A `2 x n_params` numpy array with lower and upper bounds if at least
one constraint is finite, and None otherwise.
Example:
>>> mll = ExactMarginalLogLikelihood(model.likelihood, model)
>>> parameter_array, property_dict, bounds_out = module_to_array(mll)
"""
warn(
"`module_to_array` is marked for deprecation, consider using "
"`get_parameters_and_bounds`, `get_parameters_as_ndarray_1d`, or "
"`get_bounds_as_ndarray` instead.",
DeprecationWarning,
)
param_dict, bounds_dict = get_parameters_and_bounds(
module=module,
name_filter=None if exclude is None else get_name_filter(exclude),
requires_grad=True,
)
if bounds is not None:
bounds_dict.update(bounds)
# Record tensor metadata and read parameter values to the tape
param_tape: List[Number] = []
property_dict = OrderedDict()
with torch.no_grad():
for name, param in param_dict.items():
property_dict[name] = TorchAttr(param.shape, param.dtype, param.device)
param_tape.extend(param.view(-1).cpu().double().tolist())
# Extract lower and upper bounds
start = 0
bounds_np = None
params_np = np.asarray(param_tape)
for name, param in param_dict.items():
numel = param.numel()
if name in bounds_dict:
for row, bound in enumerate(bounds_dict[name]):
if bound is None:
continue
if torch.is_tensor(bound):
if (bound == (2 * row - 1) * inf).all():
continue
bound = bound.detach().cpu()
elif bound == (2 * row - 1) * inf:
continue
if bounds_np is None:
bounds_np = np.full((2, len(params_np)), ((-inf,), (inf,)))
bounds_np[row, start : start + numel] = bound
start += numel
return params_np, property_dict, bounds_np
def set_params_with_array(
module: Module, x: np.ndarray, property_dict: Dict[str, TorchAttr]
) -> Module:
r"""Set module parameters with values from numpy array.
Args:
module: Module with parameters to be set
x: Numpy array with parameter values
property_dict: Dictionary of parameter names and torch attributes as
returned by module_to_array.
Returns:
Module: module with parameters updated in-place.
Example:
>>> mll = ExactMarginalLogLikelihood(model.likelihood, model)
>>> parameter_array, property_dict, bounds_out = module_to_array(mll)
>>> parameter_array += 0.1 # perturb parameters (for example only)
>>> mll = set_params_with_array(mll, parameter_array, property_dict)
"""
warn(
"`_set_params_with_array` is marked for deprecation, consider using "
"`set_parameters_from_ndarray_1d` instead.",
DeprecationWarning,
)
param_dict = OrderedDict(module.named_parameters())
start_idx = 0
for p_name, attrs in property_dict.items():
# Construct the new tensor
if len(attrs.shape) == 0: # deal with scalar tensors
end_idx = start_idx + 1
new_data = torch.tensor(
x[start_idx], dtype=attrs.dtype, device=attrs.device
)
else:
end_idx = start_idx + np.prod(attrs.shape)
new_data = torch.tensor(
x[start_idx:end_idx], dtype=attrs.dtype, device=attrs.device
).view(*attrs.shape)
start_idx = end_idx
# Update corresponding parameter in-place. Disable autograd to update.
param_dict[p_name].requires_grad_(False)
param_dict[p_name].copy_(new_data)
param_dict[p_name].requires_grad_(True)
return module