Spaces:
Sleeping
Sleeping
| import matplotlib.pyplot as plt | |
| import pandas as pd | |
| from utils import generate_underlined_line | |
| from data import extract_model_data | |
| # Figure dimensions | |
| FIGURE_WIDTH_DUAL = 18 | |
| FIGURE_HEIGHT_DUAL = 9 | |
| # Colors | |
| COLORS = { | |
| 'passed': '#4CAF50', # Medium green | |
| 'failed': '#E53E3E', # More red | |
| 'skipped': '#FFD54F', # Medium yellow | |
| 'error': '#8B0000' # Dark red | |
| } | |
| # Styling constants | |
| BLACK = '#000000' | |
| LABEL_COLOR = '#AAAAAA' | |
| TITLE_COLOR = '#FFFFFF' | |
| # Font sizes | |
| DEVICE_TITLE_FONT_SIZE = 28 | |
| # Layout constants | |
| SEPARATOR_LINE_Y_END = 0.85 | |
| SUBPLOT_TOP = 0.85 | |
| SUBPLOT_WSPACE = 0.4 | |
| PIE_START_ANGLE = 90 | |
| BORDER_LINE_WIDTH = 0.5 | |
| SEPARATOR_ALPHA = 0.5 | |
| SEPARATOR_LINE_WIDTH = 1 | |
| DEVICE_TITLE_PAD = 2 | |
| MODEL_TITLE_Y = 1 | |
| # Processing constants | |
| MAX_FAILURE_ITEMS = 10 | |
| def _process_failure_category(failures_obj: dict, category: str, info_lines: list) -> None: | |
| """Process a single failure category (multi or single) and add to info_lines.""" | |
| if category in failures_obj and failures_obj[category]: | |
| info_lines.append(generate_underlined_line(f"{category.title()} GPU failure details:")) | |
| if isinstance(failures_obj[category], list): | |
| # Handle list of failures (could be strings or dicts) | |
| for i, failure in enumerate(failures_obj[category][:MAX_FAILURE_ITEMS]): | |
| if isinstance(failure, dict): | |
| # Extract meaningful info from dict (e.g., test name, line, etc.) | |
| failure_str = failure.get('line', failure.get('test', | |
| failure.get('name', str(failure)))) | |
| info_lines.append(f" {i+1}. {failure_str}") | |
| else: | |
| info_lines.append(f" {i+1}. {str(failure)}") | |
| if len(failures_obj[category]) > MAX_FAILURE_ITEMS: | |
| remaining = len(failures_obj[category]) - MAX_FAILURE_ITEMS | |
| info_lines.append(f"... and {remaining} more") | |
| else: | |
| info_lines.append(str(failures_obj[category])) | |
| info_lines.append("") | |
| def extract_failure_info(failures_obj, device: str, multi_count: int, single_count: int) -> str: | |
| """Extract failure information from failures object.""" | |
| if (not failures_obj or pd.isna(failures_obj)) and multi_count == 0 and single_count == 0: | |
| return f"No failures on {device}" | |
| info_lines = [] | |
| # Add counts summary | |
| if multi_count > 0 or single_count > 0: | |
| info_lines.append(generate_underlined_line(f"Failure Summary for {device}:")) | |
| if multi_count > 0: | |
| info_lines.append(f"Multi GPU failures: {multi_count}") | |
| if single_count > 0: | |
| info_lines.append(f"Single GPU failures: {single_count}") | |
| info_lines.append("") | |
| # Try to extract detailed failure information | |
| try: | |
| if isinstance(failures_obj, dict): | |
| _process_failure_category(failures_obj, 'multi', info_lines) | |
| _process_failure_category(failures_obj, 'single', info_lines) | |
| return "\n".join(info_lines) if info_lines else f"No detailed failure info for {device}" | |
| except Exception as e: | |
| if multi_count > 0 or single_count > 0: | |
| error_msg = (f"Failures detected on {device} (Multi: {multi_count}, Single: {single_count})\n" | |
| f"Details unavailable: {str(e)}") | |
| return error_msg | |
| return f"Error processing failure info for {device}: {str(e)}" | |
| def _create_pie_chart(ax: plt.Axes, device_label: str, filtered_stats: dict) -> None: | |
| """Create a pie chart for device statistics.""" | |
| if not filtered_stats: | |
| ax.text(0.5, 0.5, 'No test results', | |
| horizontalalignment='center', verticalalignment='center', | |
| transform=ax.transAxes, fontsize=14, color='#888888', | |
| fontfamily='monospace', weight='normal') | |
| ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='bold', | |
| pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace') | |
| ax.axis('off') | |
| return | |
| chart_colors = [COLORS[category] for category in filtered_stats.keys()] | |
| # Create minimal pie chart - full pie, no donut effect | |
| wedges, texts, autotexts = ax.pie( | |
| filtered_stats.values(), | |
| labels=[label.lower() for label in filtered_stats.keys()], # Lowercase for minimal look | |
| colors=chart_colors, | |
| autopct=lambda pct: f'{int(pct/100*sum(filtered_stats.values()))}', | |
| startangle=PIE_START_ANGLE, | |
| explode=None, # No separation | |
| shadow=False, | |
| wedgeprops=dict(edgecolor='#1a1a1a', linewidth=BORDER_LINE_WIDTH), # Minimal borders | |
| textprops={'fontsize': 12, 'weight': 'normal', | |
| 'color': LABEL_COLOR, 'fontfamily': 'monospace'} | |
| ) | |
| # Enhanced percentage text styling for better readability | |
| for autotext in autotexts: | |
| autotext.set_color(BLACK) # Black text for better contrast | |
| autotext.set_weight('bold') | |
| autotext.set_fontsize(14) | |
| autotext.set_fontfamily('monospace') | |
| # Minimal category labels | |
| for text in texts: | |
| text.set_color(LABEL_COLOR) | |
| text.set_weight('normal') | |
| text.set_fontsize(13) | |
| text.set_fontfamily('monospace') | |
| # Device label closer to chart and bigger | |
| ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='normal', | |
| pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace') | |
| def plot_model_stats(df: pd.DataFrame, model_name: str) -> tuple[plt.Figure, str, str]: | |
| """Draws pie charts of model's passed, failed, skipped, and error stats for AMD and NVIDIA.""" | |
| # Handle case where the dataframe is empty or the model name could not be found in it | |
| if df.empty or model_name not in df.index: | |
| # Create empty stats for both devices | |
| amd_filtered = {} | |
| nvidia_filtered = {} | |
| failed_multi_amd = failed_single_amd = failed_multi_nvidia = failed_single_nvidia = 0 | |
| failures_amd = failures_nvidia = {} | |
| else: | |
| row = df.loc[model_name] | |
| # Extract and process model data | |
| amd_stats, nvidia_stats, failed_multi_amd, failed_single_amd, failed_multi_nvidia, failed_single_nvidia = \ | |
| extract_model_data(row) | |
| # Filter out categories with 0 values for cleaner visualization | |
| amd_filtered = {k: v for k, v in amd_stats.items() if v > 0} | |
| nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0} | |
| # Generate failure info directly from dataframe | |
| failures_amd = row.get('failures_amd', {}) | |
| failures_nvidia = row.get('failures_nvidia', {}) | |
| # Always create figure with two subplots side by side with padding | |
| fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(FIGURE_WIDTH_DUAL, FIGURE_HEIGHT_DUAL), facecolor=BLACK) | |
| ax1.set_facecolor(BLACK) | |
| ax2.set_facecolor(BLACK) | |
| # Create both pie charts with device labels | |
| _create_pie_chart(ax1, "amd", amd_filtered) | |
| _create_pie_chart(ax2, "nvidia", nvidia_filtered) | |
| # Add subtle separation line between charts - stops at device labels level | |
| line_x = 0.5 | |
| fig.add_artist(plt.Line2D([line_x, line_x], [0.0, SEPARATOR_LINE_Y_END], | |
| color='#333333', linewidth=SEPARATOR_LINE_WIDTH, | |
| alpha=SEPARATOR_ALPHA, transform=fig.transFigure)) | |
| # Add central shared title for model name | |
| fig.suptitle(f'{model_name.lower()}', fontsize=32, weight='bold', | |
| color='#CCCCCC', fontfamily='monospace', y=MODEL_TITLE_Y) | |
| # Clean layout with padding and space for central title | |
| plt.tight_layout() | |
| plt.subplots_adjust(top=SUBPLOT_TOP, wspace=SUBPLOT_WSPACE) | |
| amd_failed_info = extract_failure_info(failures_amd, 'AMD', failed_multi_amd, failed_single_amd) | |
| nvidia_failed_info = extract_failure_info(failures_nvidia, 'NVIDIA', failed_multi_nvidia, failed_single_nvidia) | |
| return fig, amd_failed_info, nvidia_failed_info | |