Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -513,6 +513,13 @@ def load_model():
|
|
513 |
if tokenizer is not None and model is not None:
|
514 |
return tokenizer, model, device
|
515 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
516 |
try:
|
517 |
# This appears to be a LoRA adapter
|
518 |
adapter_path = "rootxhacker/llama-3B-diffusion-exp-fixed"
|
@@ -520,19 +527,24 @@ def load_model():
|
|
520 |
|
521 |
print(f"Loading AR-Diffusion model on {device}...")
|
522 |
|
523 |
-
# Load tokenizer from adapter
|
524 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
525 |
if tokenizer.pad_token is None:
|
526 |
tokenizer.pad_token = tokenizer.eos_token
|
527 |
|
528 |
-
# Load the adapter model
|
529 |
print("Loading adapter model...")
|
530 |
model = AutoModelForCausalLM.from_pretrained(
|
531 |
adapter_path,
|
532 |
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
|
533 |
device_map="auto" if device.type == "cuda" else None,
|
534 |
trust_remote_code=True,
|
535 |
-
low_cpu_mem_usage=True
|
|
|
536 |
)
|
537 |
|
538 |
print("β
AR-Diffusion model loaded successfully!")
|
@@ -541,24 +553,56 @@ def load_model():
|
|
541 |
except Exception as e:
|
542 |
print(f"β Error loading {adapter_path}: {e}")
|
543 |
|
544 |
-
#
|
545 |
-
print("π
|
546 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
547 |
-
fallback_model = "gpt2-medium"
|
548 |
|
549 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
550 |
if tokenizer.pad_token is None:
|
551 |
tokenizer.pad_token = tokenizer.eos_token
|
552 |
|
553 |
model = AutoModelForCausalLM.from_pretrained(
|
554 |
-
|
555 |
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
|
556 |
device_map="auto" if device.type == "cuda" else None,
|
557 |
low_cpu_mem_usage=True
|
558 |
)
|
559 |
|
560 |
-
print(
|
561 |
-
print("β οΈ Note: Using
|
562 |
return tokenizer, model, device
|
563 |
|
564 |
def cleanup_memory():
|
@@ -604,8 +648,9 @@ def chat_function(message, history, mode, progress=gr.Progress()):
|
|
604 |
- **Words/Second:** {stats['words_per_second']:.1f}
|
605 |
- **Steps:** {stats['steps']}"""
|
606 |
|
607 |
-
# Update history
|
608 |
-
history.append(
|
|
|
609 |
|
610 |
# Cleanup memory for Zero GPU efficiency
|
611 |
cleanup_memory()
|
@@ -614,7 +659,8 @@ def chat_function(message, history, mode, progress=gr.Progress()):
|
|
614 |
|
615 |
except Exception as e:
|
616 |
error_msg = f"Error: {str(e)}"
|
617 |
-
history.append(
|
|
|
618 |
cleanup_memory()
|
619 |
return history, "", f"**β Error occurred during generation**"
|
620 |
|
@@ -646,6 +692,7 @@ def create_interface():
|
|
646 |
<p>This is an experimental AR-Diffusion model. Results may vary and the model is still under development.</p>
|
647 |
<p><em>π₯ Powered by Zero GPU with @spaces.GPU</em></p>
|
648 |
<p><small>Model: rootxhacker/llama-3B-diffusion-exp-fixed (LoRA Adapter)</small></p>
|
|
|
649 |
</div>
|
650 |
""")
|
651 |
|
@@ -654,9 +701,9 @@ def create_interface():
|
|
654 |
chatbot = gr.Chatbot(
|
655 |
[],
|
656 |
elem_id="chatbot",
|
657 |
-
bubble_full_width=False,
|
658 |
height=500,
|
659 |
-
show_label=False
|
|
|
660 |
)
|
661 |
|
662 |
with gr.Row():
|
@@ -698,7 +745,8 @@ def create_interface():
|
|
698 |
<p>This experimental model uses autoregressive diffusion for text generation, creating responses by iteratively denoising masked tokens.</p>
|
699 |
<br>
|
700 |
<p><strong>Model:</strong> LoRA adapter trained for AR-Diffusion</p>
|
701 |
-
<p><strong>
|
|
|
702 |
</div>
|
703 |
""")
|
704 |
|
|
|
513 |
if tokenizer is not None and model is not None:
|
514 |
return tokenizer, model, device
|
515 |
|
516 |
+
# Get HF token from environment
|
517 |
+
hf_token = os.getenv("HF_TOKEN")
|
518 |
+
if hf_token:
|
519 |
+
print("π HF_TOKEN found - using authenticated access")
|
520 |
+
else:
|
521 |
+
print("β οΈ No HF_TOKEN found - using public access only")
|
522 |
+
|
523 |
try:
|
524 |
# This appears to be a LoRA adapter
|
525 |
adapter_path = "rootxhacker/llama-3B-diffusion-exp-fixed"
|
|
|
527 |
|
528 |
print(f"Loading AR-Diffusion model on {device}...")
|
529 |
|
530 |
+
# Load tokenizer from adapter with token
|
531 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
532 |
+
adapter_path,
|
533 |
+
trust_remote_code=True,
|
534 |
+
token=hf_token
|
535 |
+
)
|
536 |
if tokenizer.pad_token is None:
|
537 |
tokenizer.pad_token = tokenizer.eos_token
|
538 |
|
539 |
+
# Load the adapter model with token
|
540 |
print("Loading adapter model...")
|
541 |
model = AutoModelForCausalLM.from_pretrained(
|
542 |
adapter_path,
|
543 |
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
|
544 |
device_map="auto" if device.type == "cuda" else None,
|
545 |
trust_remote_code=True,
|
546 |
+
low_cpu_mem_usage=True,
|
547 |
+
token=hf_token
|
548 |
)
|
549 |
|
550 |
print("β
AR-Diffusion model loaded successfully!")
|
|
|
553 |
except Exception as e:
|
554 |
print(f"β Error loading {adapter_path}: {e}")
|
555 |
|
556 |
+
# Try alternative working models for AR-Diffusion demo
|
557 |
+
print("π Trying alternative models...")
|
558 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
559 |
|
560 |
+
# Try different models in order of preference
|
561 |
+
alternative_models = [
|
562 |
+
"microsoft/DialoGPT-medium",
|
563 |
+
"gpt2-large",
|
564 |
+
"gpt2-medium",
|
565 |
+
"distilgpt2"
|
566 |
+
]
|
567 |
+
|
568 |
+
for alt_model in alternative_models:
|
569 |
+
try:
|
570 |
+
print(f"Trying {alt_model}...")
|
571 |
+
tokenizer = AutoTokenizer.from_pretrained(alt_model, token=hf_token)
|
572 |
+
if tokenizer.pad_token is None:
|
573 |
+
tokenizer.pad_token = tokenizer.eos_token
|
574 |
+
|
575 |
+
model = AutoModelForCausalLM.from_pretrained(
|
576 |
+
alt_model,
|
577 |
+
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
|
578 |
+
device_map="auto" if device.type == "cuda" else None,
|
579 |
+
low_cpu_mem_usage=True,
|
580 |
+
token=hf_token
|
581 |
+
)
|
582 |
+
|
583 |
+
print(f"β
Alternative model {alt_model} loaded successfully!")
|
584 |
+
print("β οΈ Note: Using alternative model - AR-Diffusion features adapted for demo")
|
585 |
+
return tokenizer, model, device
|
586 |
+
|
587 |
+
except Exception as alt_e:
|
588 |
+
print(f"β {alt_model} failed: {alt_e}")
|
589 |
+
continue
|
590 |
+
|
591 |
+
# Final fallback
|
592 |
+
print("π Using final fallback model...")
|
593 |
+
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
594 |
if tokenizer.pad_token is None:
|
595 |
tokenizer.pad_token = tokenizer.eos_token
|
596 |
|
597 |
model = AutoModelForCausalLM.from_pretrained(
|
598 |
+
"distilgpt2",
|
599 |
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
|
600 |
device_map="auto" if device.type == "cuda" else None,
|
601 |
low_cpu_mem_usage=True
|
602 |
)
|
603 |
|
604 |
+
print("β
Final fallback model loaded successfully!")
|
605 |
+
print("β οΈ Note: Using basic model - AR-Diffusion features adapted for demo")
|
606 |
return tokenizer, model, device
|
607 |
|
608 |
def cleanup_memory():
|
|
|
648 |
- **Words/Second:** {stats['words_per_second']:.1f}
|
649 |
- **Steps:** {stats['steps']}"""
|
650 |
|
651 |
+
# Update history with proper message format
|
652 |
+
history.append({"role": "user", "content": message})
|
653 |
+
history.append({"role": "assistant", "content": response})
|
654 |
|
655 |
# Cleanup memory for Zero GPU efficiency
|
656 |
cleanup_memory()
|
|
|
659 |
|
660 |
except Exception as e:
|
661 |
error_msg = f"Error: {str(e)}"
|
662 |
+
history.append({"role": "user", "content": message})
|
663 |
+
history.append({"role": "assistant", "content": error_msg})
|
664 |
cleanup_memory()
|
665 |
return history, "", f"**β Error occurred during generation**"
|
666 |
|
|
|
692 |
<p>This is an experimental AR-Diffusion model. Results may vary and the model is still under development.</p>
|
693 |
<p><em>π₯ Powered by Zero GPU with @spaces.GPU</em></p>
|
694 |
<p><small>Model: rootxhacker/llama-3B-diffusion-exp-fixed (LoRA Adapter)</small></p>
|
695 |
+
<p><small>π Requires HF_TOKEN for gated model access</small></p>
|
696 |
</div>
|
697 |
""")
|
698 |
|
|
|
701 |
chatbot = gr.Chatbot(
|
702 |
[],
|
703 |
elem_id="chatbot",
|
|
|
704 |
height=500,
|
705 |
+
show_label=False,
|
706 |
+
type="messages"
|
707 |
)
|
708 |
|
709 |
with gr.Row():
|
|
|
745 |
<p>This experimental model uses autoregressive diffusion for text generation, creating responses by iteratively denoising masked tokens.</p>
|
746 |
<br>
|
747 |
<p><strong>Model:</strong> LoRA adapter trained for AR-Diffusion</p>
|
748 |
+
<p><strong>Authentication:</strong> Requires HF_TOKEN for gated Llama model access</p>
|
749 |
+
<p><strong>Note:</strong> This model is experimental and may produce unexpected results. If the specific model fails to load, alternative models will be used for demonstration.</p>
|
750 |
</div>
|
751 |
""")
|
752 |
|