jade
commited on
Commit
·
bf277fe
1
Parent(s):
def28d3
Base files
Browse files- .github/workflows/ci.yaml +22 -0
- .gitignore +22 -0
- .python-version +1 -0
- LICENSE +201 -0
- app.py +444 -0
- cli.py +144 -0
- dia/__init__.py +6 -0
- dia/audio.py +163 -0
- dia/config.py +176 -0
- dia/layers.py +888 -0
- dia/model.py +802 -0
- dia/state.py +217 -0
- dia/static/images/banner.png +3 -0
- docker/Dockerfile.cpu +48 -0
- docker/Dockerfile.gpu +49 -0
- example/benchmark.py +39 -0
- example/simple-cpu.py +19 -0
- example/simple-mac.py +12 -0
- example/simple.py +18 -0
- example/simple_batch.py +12 -0
- example/voice_clone.py +31 -0
- example/voice_clone_batch.py +26 -0
- example_prompt.mp3 +3 -0
- hf.py +17 -0
- pyproject.toml +66 -0
- uv.lock +0 -0
.github/workflows/ci.yaml
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: Continuous Integration
|
| 2 |
+
|
| 3 |
+
on:
|
| 4 |
+
pull_request:
|
| 5 |
+
branches:
|
| 6 |
+
- main
|
| 7 |
+
|
| 8 |
+
jobs:
|
| 9 |
+
lint_and_format:
|
| 10 |
+
runs-on: ubuntu-latest
|
| 11 |
+
name: Lint and Format
|
| 12 |
+
steps:
|
| 13 |
+
- uses: actions/checkout@v4
|
| 14 |
+
- uses: astral-sh/ruff-action@v3
|
| 15 |
+
with:
|
| 16 |
+
version: latest
|
| 17 |
+
|
| 18 |
+
- name: Check Lint using Ruff
|
| 19 |
+
run: ruff check
|
| 20 |
+
|
| 21 |
+
- name: Check Format using Ruff
|
| 22 |
+
run: ruff format --check --diff
|
.gitignore
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python-generated files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[oc]
|
| 4 |
+
build/
|
| 5 |
+
dist/
|
| 6 |
+
wheels/
|
| 7 |
+
*.egg-info
|
| 8 |
+
|
| 9 |
+
# Virtual environments
|
| 10 |
+
.venv
|
| 11 |
+
.idea/
|
| 12 |
+
.gradio
|
| 13 |
+
|
| 14 |
+
**/*.pth
|
| 15 |
+
**/*.safetensors
|
| 16 |
+
**/*.mp3
|
| 17 |
+
!example_prompt.mp3
|
| 18 |
+
**/*.txt
|
| 19 |
+
|
| 20 |
+
.ruff_cache
|
| 21 |
+
.ipynb_checkpoints
|
| 22 |
+
config.json
|
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.10
|
LICENSE
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Apache License
|
| 2 |
+
Version 2.0, January 2004
|
| 3 |
+
http://www.apache.org/licenses/
|
| 4 |
+
|
| 5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 6 |
+
|
| 7 |
+
1. Definitions.
|
| 8 |
+
|
| 9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
| 10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
| 11 |
+
|
| 12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
| 13 |
+
the copyright owner that is granting the License.
|
| 14 |
+
|
| 15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
| 16 |
+
other entities that control, are controlled by, or are under common
|
| 17 |
+
control with that entity. For the purposes of this definition,
|
| 18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
| 19 |
+
direction or management of such entity, whether by contract or
|
| 20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 22 |
+
|
| 23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
| 24 |
+
exercising permissions granted by this License.
|
| 25 |
+
|
| 26 |
+
"Source" form shall mean the preferred form for making modifications,
|
| 27 |
+
including but not limited to software source code, documentation
|
| 28 |
+
source, and configuration files.
|
| 29 |
+
|
| 30 |
+
"Object" form shall mean any form resulting from mechanical
|
| 31 |
+
transformation or translation of a Source form, including but
|
| 32 |
+
not limited to compiled object code, generated documentation,
|
| 33 |
+
and conversions to other media types.
|
| 34 |
+
|
| 35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
| 36 |
+
Object form, made available under the License, as indicated by a
|
| 37 |
+
copyright notice that is included in or attached to the work
|
| 38 |
+
(an example is provided in the Appendix below).
|
| 39 |
+
|
| 40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
| 41 |
+
form, that is based on (or derived from) the Work and for which the
|
| 42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
| 43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
| 44 |
+
of this License, Derivative Works shall not include works that remain
|
| 45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
| 46 |
+
the Work and Derivative Works thereof.
|
| 47 |
+
|
| 48 |
+
"Contribution" shall mean any work of authorship, including
|
| 49 |
+
the original version of the Work and any modifications or additions
|
| 50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
| 51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
| 53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
| 54 |
+
means any form of electronic, verbal, or written communication sent
|
| 55 |
+
to the Licensor or its representatives, including but not limited to
|
| 56 |
+
communication on electronic mailing lists, source code control systems,
|
| 57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
| 58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
| 59 |
+
excluding communication that is conspicuously marked or otherwise
|
| 60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
| 61 |
+
|
| 62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
| 64 |
+
subsequently incorporated within the Work.
|
| 65 |
+
|
| 66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
| 70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
| 71 |
+
Work and such Derivative Works in Source or Object form.
|
| 72 |
+
|
| 73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
| 74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 76 |
+
(except as stated in this section) patent license to make, have made,
|
| 77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 78 |
+
where such license applies only to those patent claims licensable
|
| 79 |
+
by such Contributor that are necessarily infringed by their
|
| 80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
| 81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
| 82 |
+
institute patent litigation against any entity (including a
|
| 83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 84 |
+
or a Contribution incorporated within the Work constitutes direct
|
| 85 |
+
or contributory patent infringement, then any patent licenses
|
| 86 |
+
granted to You under this License for that Work shall terminate
|
| 87 |
+
as of the date such litigation is filed.
|
| 88 |
+
|
| 89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
| 90 |
+
Work or Derivative Works thereof in any medium, with or without
|
| 91 |
+
modifications, and in Source or Object form, provided that You
|
| 92 |
+
meet the following conditions:
|
| 93 |
+
|
| 94 |
+
(a) You must give any other recipients of the Work or
|
| 95 |
+
Derivative Works a copy of this License; and
|
| 96 |
+
|
| 97 |
+
(b) You must cause any modified files to carry prominent notices
|
| 98 |
+
stating that You changed the files; and
|
| 99 |
+
|
| 100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
| 101 |
+
that You distribute, all copyright, patent, trademark, and
|
| 102 |
+
attribution notices from the Source form of the Work,
|
| 103 |
+
excluding those notices that do not pertain to any part of
|
| 104 |
+
the Derivative Works; and
|
| 105 |
+
|
| 106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
| 107 |
+
distribution, then any Derivative Works that You distribute must
|
| 108 |
+
include a readable copy of the attribution notices contained
|
| 109 |
+
within such NOTICE file, excluding those notices that do not
|
| 110 |
+
pertain to any part of the Derivative Works, in at least one
|
| 111 |
+
of the following places: within a NOTICE text file distributed
|
| 112 |
+
as part of the Derivative Works; within the Source form or
|
| 113 |
+
documentation, if provided along with the Derivative Works; or,
|
| 114 |
+
within a display generated by the Derivative Works, if and
|
| 115 |
+
wherever such third-party notices normally appear. The contents
|
| 116 |
+
of the NOTICE file are for informational purposes only and
|
| 117 |
+
do not modify the License. You may add Your own attribution
|
| 118 |
+
notices within Derivative Works that You distribute, alongside
|
| 119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
| 120 |
+
that such additional attribution notices cannot be construed
|
| 121 |
+
as modifying the License.
|
| 122 |
+
|
| 123 |
+
You may add Your own copyright statement to Your modifications and
|
| 124 |
+
may provide additional or different license terms and conditions
|
| 125 |
+
for use, reproduction, or distribution of Your modifications, or
|
| 126 |
+
for any such Derivative Works as a whole, provided Your use,
|
| 127 |
+
reproduction, and distribution of the Work otherwise complies with
|
| 128 |
+
the conditions stated in this License.
|
| 129 |
+
|
| 130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
| 132 |
+
by You to the Licensor shall be under the terms and conditions of
|
| 133 |
+
this License, without any additional terms or conditions.
|
| 134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
| 135 |
+
the terms of any separate license agreement you may have executed
|
| 136 |
+
with Licensor regarding such Contributions.
|
| 137 |
+
|
| 138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
| 139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
| 140 |
+
except as required for reasonable and customary use in describing the
|
| 141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
| 142 |
+
|
| 143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 144 |
+
agreed to in writing, Licensor provides the Work (and each
|
| 145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 147 |
+
implied, including, without limitation, any warranties or conditions
|
| 148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 150 |
+
appropriateness of using or redistributing the Work and assume any
|
| 151 |
+
risks associated with Your exercise of permissions under this License.
|
| 152 |
+
|
| 153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
| 154 |
+
whether in tort (including negligence), contract, or otherwise,
|
| 155 |
+
unless required by applicable law (such as deliberate and grossly
|
| 156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
| 157 |
+
liable to You for damages, including any direct, indirect, special,
|
| 158 |
+
incidental, or consequential damages of any character arising as a
|
| 159 |
+
result of this License or out of the use or inability to use the
|
| 160 |
+
Work (including but not limited to damages for loss of goodwill,
|
| 161 |
+
work stoppage, computer failure or malfunction, or any and all
|
| 162 |
+
other commercial damages or losses), even if such Contributor
|
| 163 |
+
has been advised of the possibility of such damages.
|
| 164 |
+
|
| 165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
| 166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
| 167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 168 |
+
or other liability obligations and/or rights consistent with this
|
| 169 |
+
License. However, in accepting such obligations, You may act only
|
| 170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
| 171 |
+
of any other Contributor, and only if You agree to indemnify,
|
| 172 |
+
defend, and hold each Contributor harmless for any liability
|
| 173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
| 174 |
+
of your accepting any such warranty or additional liability.
|
| 175 |
+
|
| 176 |
+
END OF TERMS AND CONDITIONS
|
| 177 |
+
|
| 178 |
+
APPENDIX: How to apply the Apache License to your work.
|
| 179 |
+
|
| 180 |
+
To apply the Apache License to your work, attach the following
|
| 181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 182 |
+
replaced with your own identifying information. (Don't include
|
| 183 |
+
the brackets!) The text should be enclosed in the appropriate
|
| 184 |
+
comment syntax for the file format. We also recommend that a
|
| 185 |
+
file or class name and description of purpose be included on the
|
| 186 |
+
same "printed page" as the copyright notice for easier
|
| 187 |
+
identification within third-party archives.
|
| 188 |
+
|
| 189 |
+
Copyright 2025 Nari Labs
|
| 190 |
+
|
| 191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 192 |
+
you may not use this file except in compliance with the License.
|
| 193 |
+
You may obtain a copy of the License at
|
| 194 |
+
|
| 195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 196 |
+
|
| 197 |
+
Unless required by applicable law or agreed to in writing, software
|
| 198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 200 |
+
See the License for the specific language governing permissions and
|
| 201 |
+
limitations under the License.
|
app.py
ADDED
|
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import contextlib
|
| 3 |
+
import io
|
| 4 |
+
import random
|
| 5 |
+
import tempfile
|
| 6 |
+
import time
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from typing import Optional, Tuple
|
| 9 |
+
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import numpy as np
|
| 12 |
+
import soundfile as sf
|
| 13 |
+
import torch
|
| 14 |
+
|
| 15 |
+
from dia.model import Dia
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# --- Global Setup ---
|
| 19 |
+
parser = argparse.ArgumentParser(description="Gradio interface for Nari TTS")
|
| 20 |
+
parser.add_argument("--device", type=str, default=None, help="Force device (e.g., 'cuda', 'mps', 'cpu')")
|
| 21 |
+
parser.add_argument("--share", action="store_true", help="Enable Gradio sharing")
|
| 22 |
+
|
| 23 |
+
args = parser.parse_args()
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# Determine device
|
| 27 |
+
if args.device:
|
| 28 |
+
device = torch.device(args.device)
|
| 29 |
+
elif torch.cuda.is_available():
|
| 30 |
+
device = torch.device("cuda")
|
| 31 |
+
# Simplified MPS check for broader compatibility
|
| 32 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
| 33 |
+
# Basic check is usually sufficient, detailed check can be problematic
|
| 34 |
+
device = torch.device("mps")
|
| 35 |
+
else:
|
| 36 |
+
device = torch.device("cpu")
|
| 37 |
+
|
| 38 |
+
print(f"Using device: {device}")
|
| 39 |
+
|
| 40 |
+
# Load Nari model and config
|
| 41 |
+
print("Loading Nari model...")
|
| 42 |
+
try:
|
| 43 |
+
dtype_map = {
|
| 44 |
+
"cpu": "float32",
|
| 45 |
+
"mps": "float32", # Apple M series – better with float32
|
| 46 |
+
"cuda": "float16", # NVIDIA – better with float16
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
dtype = dtype_map.get(device.type, "float16")
|
| 50 |
+
print(f"Using device: {device}, attempting to load model with {dtype}")
|
| 51 |
+
model = Dia.from_pretrained("nari-labs/Dia-1.6B-0626", compute_dtype=dtype, device=device)
|
| 52 |
+
except Exception as e:
|
| 53 |
+
print(f"Error loading Nari model: {e}")
|
| 54 |
+
raise
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def set_seed(seed: int):
|
| 58 |
+
"""Sets the random seed for reproducibility."""
|
| 59 |
+
random.seed(seed)
|
| 60 |
+
np.random.seed(seed)
|
| 61 |
+
torch.manual_seed(seed)
|
| 62 |
+
if torch.cuda.is_available():
|
| 63 |
+
torch.cuda.manual_seed(seed)
|
| 64 |
+
torch.cuda.manual_seed_all(seed)
|
| 65 |
+
torch.backends.cudnn.deterministic = True
|
| 66 |
+
torch.backends.cudnn.benchmark = False
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def run_inference(
|
| 70 |
+
text_input: str,
|
| 71 |
+
audio_prompt_text_input: str,
|
| 72 |
+
audio_prompt_input: Optional[Tuple[int, np.ndarray]],
|
| 73 |
+
max_new_tokens: int,
|
| 74 |
+
cfg_scale: float,
|
| 75 |
+
temperature: float,
|
| 76 |
+
top_p: float,
|
| 77 |
+
cfg_filter_top_k: int,
|
| 78 |
+
speed_factor: float,
|
| 79 |
+
seed: Optional[int] = None,
|
| 80 |
+
):
|
| 81 |
+
"""
|
| 82 |
+
Runs Nari inference using the globally loaded model and provided inputs.
|
| 83 |
+
Uses temporary files for text and audio prompt compatibility with inference.generate.
|
| 84 |
+
"""
|
| 85 |
+
global model, device # Access global model, config, device
|
| 86 |
+
console_output_buffer = io.StringIO()
|
| 87 |
+
|
| 88 |
+
with contextlib.redirect_stdout(console_output_buffer):
|
| 89 |
+
# Prepend transcript text if audio_prompt provided
|
| 90 |
+
if audio_prompt_input and audio_prompt_text_input and not audio_prompt_text_input.isspace():
|
| 91 |
+
text_input = audio_prompt_text_input + "\n" + text_input
|
| 92 |
+
text_input = text_input.strip()
|
| 93 |
+
|
| 94 |
+
if audio_prompt_input and (not audio_prompt_text_input or audio_prompt_text_input.isspace()):
|
| 95 |
+
raise gr.Error("Audio Prompt Text input cannot be empty.")
|
| 96 |
+
|
| 97 |
+
if not text_input or text_input.isspace():
|
| 98 |
+
raise gr.Error("Text input cannot be empty.")
|
| 99 |
+
|
| 100 |
+
# Preprocess Audio
|
| 101 |
+
temp_txt_file_path = None
|
| 102 |
+
temp_audio_prompt_path = None
|
| 103 |
+
output_audio = (44100, np.zeros(1, dtype=np.float32))
|
| 104 |
+
|
| 105 |
+
try:
|
| 106 |
+
prompt_path_for_generate = None
|
| 107 |
+
if audio_prompt_input is not None:
|
| 108 |
+
sr, audio_data = audio_prompt_input
|
| 109 |
+
# Check if audio_data is valid
|
| 110 |
+
if audio_data is None or audio_data.size == 0 or audio_data.max() == 0: # Check for silence/empty
|
| 111 |
+
gr.Warning("Audio prompt seems empty or silent, ignoring prompt.")
|
| 112 |
+
else:
|
| 113 |
+
# Save prompt audio to a temporary WAV file
|
| 114 |
+
with tempfile.NamedTemporaryFile(mode="wb", suffix=".wav", delete=False) as f_audio:
|
| 115 |
+
temp_audio_prompt_path = f_audio.name # Store path for cleanup
|
| 116 |
+
|
| 117 |
+
# Basic audio preprocessing for consistency
|
| 118 |
+
# Convert to float32 in [-1, 1] range if integer type
|
| 119 |
+
if np.issubdtype(audio_data.dtype, np.integer):
|
| 120 |
+
max_val = np.iinfo(audio_data.dtype).max
|
| 121 |
+
audio_data = audio_data.astype(np.float32) / max_val
|
| 122 |
+
elif not np.issubdtype(audio_data.dtype, np.floating):
|
| 123 |
+
gr.Warning(f"Unsupported audio prompt dtype {audio_data.dtype}, attempting conversion.")
|
| 124 |
+
# Attempt conversion, might fail for complex types
|
| 125 |
+
try:
|
| 126 |
+
audio_data = audio_data.astype(np.float32)
|
| 127 |
+
except Exception as conv_e:
|
| 128 |
+
raise gr.Error(f"Failed to convert audio prompt to float32: {conv_e}")
|
| 129 |
+
|
| 130 |
+
# Ensure mono (average channels if stereo)
|
| 131 |
+
if audio_data.ndim > 1:
|
| 132 |
+
if audio_data.shape[0] == 2: # Assume (2, N)
|
| 133 |
+
audio_data = np.mean(audio_data, axis=0)
|
| 134 |
+
elif audio_data.shape[1] == 2: # Assume (N, 2)
|
| 135 |
+
audio_data = np.mean(audio_data, axis=1)
|
| 136 |
+
else:
|
| 137 |
+
gr.Warning(
|
| 138 |
+
f"Audio prompt has unexpected shape {audio_data.shape}, taking first channel/axis."
|
| 139 |
+
)
|
| 140 |
+
audio_data = (
|
| 141 |
+
audio_data[0] if audio_data.shape[0] < audio_data.shape[1] else audio_data[:, 0]
|
| 142 |
+
)
|
| 143 |
+
audio_data = np.ascontiguousarray(audio_data) # Ensure contiguous after slicing/mean
|
| 144 |
+
|
| 145 |
+
# Write using soundfile
|
| 146 |
+
try:
|
| 147 |
+
sf.write(
|
| 148 |
+
temp_audio_prompt_path, audio_data, sr, subtype="FLOAT"
|
| 149 |
+
) # Explicitly use FLOAT subtype
|
| 150 |
+
prompt_path_for_generate = temp_audio_prompt_path
|
| 151 |
+
print(f"Created temporary audio prompt file: {temp_audio_prompt_path} (orig sr: {sr})")
|
| 152 |
+
except Exception as write_e:
|
| 153 |
+
print(f"Error writing temporary audio file: {write_e}")
|
| 154 |
+
raise gr.Error(f"Failed to save audio prompt: {write_e}")
|
| 155 |
+
|
| 156 |
+
# Set and Display Generation Seed
|
| 157 |
+
if seed is None or seed < 0:
|
| 158 |
+
seed = random.randint(0, 2**32 - 1)
|
| 159 |
+
print(f"\nNo seed provided, generated random seed: {seed}\n")
|
| 160 |
+
else:
|
| 161 |
+
print(f"\nUsing user-selected seed: {seed}\n")
|
| 162 |
+
set_seed(seed)
|
| 163 |
+
|
| 164 |
+
# Run Generation
|
| 165 |
+
print(f'Generating speech: \n"{text_input}"\n')
|
| 166 |
+
|
| 167 |
+
start_time = time.time()
|
| 168 |
+
|
| 169 |
+
# Use torch.inference_mode() context manager for the generation call
|
| 170 |
+
with torch.inference_mode():
|
| 171 |
+
output_audio_np = model.generate(
|
| 172 |
+
text_input,
|
| 173 |
+
max_tokens=max_new_tokens,
|
| 174 |
+
cfg_scale=cfg_scale,
|
| 175 |
+
temperature=temperature,
|
| 176 |
+
top_p=top_p,
|
| 177 |
+
cfg_filter_top_k=cfg_filter_top_k, # Pass the value here
|
| 178 |
+
use_torch_compile=False, # Keep False for Gradio stability
|
| 179 |
+
audio_prompt=prompt_path_for_generate,
|
| 180 |
+
verbose=True,
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
end_time = time.time()
|
| 184 |
+
print(f"Generation finished in {end_time - start_time:.2f} seconds.\n")
|
| 185 |
+
|
| 186 |
+
# 4. Convert Codes to Audio
|
| 187 |
+
if output_audio_np is not None:
|
| 188 |
+
# Get sample rate from the loaded DAC model
|
| 189 |
+
output_sr = 44100
|
| 190 |
+
|
| 191 |
+
# --- Slow down audio ---
|
| 192 |
+
original_len = len(output_audio_np)
|
| 193 |
+
# Ensure speed_factor is positive and not excessively small/large to avoid issues
|
| 194 |
+
speed_factor = max(0.1, min(speed_factor, 5.0))
|
| 195 |
+
target_len = int(original_len / speed_factor) # Target length based on speed_factor
|
| 196 |
+
if target_len != original_len and target_len > 0: # Only interpolate if length changes and is valid
|
| 197 |
+
x_original = np.arange(original_len)
|
| 198 |
+
x_resampled = np.linspace(0, original_len - 1, target_len)
|
| 199 |
+
resampled_audio_np = np.interp(x_resampled, x_original, output_audio_np)
|
| 200 |
+
output_audio = (
|
| 201 |
+
output_sr,
|
| 202 |
+
resampled_audio_np.astype(np.float32),
|
| 203 |
+
) # Use resampled audio
|
| 204 |
+
print(
|
| 205 |
+
f"Resampled audio from {original_len} to {target_len} samples for {speed_factor:.2f}x speed."
|
| 206 |
+
)
|
| 207 |
+
else:
|
| 208 |
+
output_audio = (
|
| 209 |
+
output_sr,
|
| 210 |
+
output_audio_np,
|
| 211 |
+
) # Keep original if calculation fails or no change
|
| 212 |
+
print(f"Skipping audio speed adjustment (factor: {speed_factor:.2f}).")
|
| 213 |
+
# --- End slowdown ---
|
| 214 |
+
|
| 215 |
+
print(f"Audio conversion successful. Final shape: {output_audio[1].shape}, Sample Rate: {output_sr}")
|
| 216 |
+
|
| 217 |
+
# Explicitly convert to int16 to prevent Gradio warning
|
| 218 |
+
if output_audio[1].dtype == np.float32 or output_audio[1].dtype == np.float64:
|
| 219 |
+
audio_for_gradio = np.clip(output_audio[1], -1.0, 1.0)
|
| 220 |
+
audio_for_gradio = (audio_for_gradio * 32767).astype(np.int16)
|
| 221 |
+
output_audio = (output_sr, audio_for_gradio)
|
| 222 |
+
print("Converted audio to int16 for Gradio output.")
|
| 223 |
+
|
| 224 |
+
else:
|
| 225 |
+
print("\nGeneration finished, but no valid tokens were produced.")
|
| 226 |
+
# Return default silence
|
| 227 |
+
gr.Warning("Generation produced no output.")
|
| 228 |
+
|
| 229 |
+
except Exception as e:
|
| 230 |
+
print(f"Error during inference: {e}")
|
| 231 |
+
import traceback
|
| 232 |
+
|
| 233 |
+
traceback.print_exc()
|
| 234 |
+
# Re-raise as Gradio error to display nicely in the UI
|
| 235 |
+
raise gr.Error(f"Inference failed: {e}")
|
| 236 |
+
|
| 237 |
+
finally:
|
| 238 |
+
# Cleanup Temporary Files defensively
|
| 239 |
+
if temp_txt_file_path and Path(temp_txt_file_path).exists():
|
| 240 |
+
try:
|
| 241 |
+
Path(temp_txt_file_path).unlink()
|
| 242 |
+
print(f"Deleted temporary text file: {temp_txt_file_path}")
|
| 243 |
+
except OSError as e:
|
| 244 |
+
print(f"Warning: Error deleting temporary text file {temp_txt_file_path}: {e}")
|
| 245 |
+
if temp_audio_prompt_path and Path(temp_audio_prompt_path).exists():
|
| 246 |
+
try:
|
| 247 |
+
Path(temp_audio_prompt_path).unlink()
|
| 248 |
+
print(f"Deleted temporary audio prompt file: {temp_audio_prompt_path}")
|
| 249 |
+
except OSError as e:
|
| 250 |
+
print(f"Warning: Error deleting temporary audio prompt file {temp_audio_prompt_path}: {e}")
|
| 251 |
+
|
| 252 |
+
# After generation, capture the printed output
|
| 253 |
+
console_output = console_output_buffer.getvalue()
|
| 254 |
+
|
| 255 |
+
return output_audio, seed, console_output
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
# --- Create Gradio Interface ---
|
| 259 |
+
css = """
|
| 260 |
+
#col-container {max-width: 90%; margin-left: auto; margin-right: auto;}
|
| 261 |
+
"""
|
| 262 |
+
# Attempt to load default text from example.txt
|
| 263 |
+
default_text = "[S1] Dia is an open weights text to dialogue model. \n[S2] You get full control over scripts and voices. \n[S1] Wow. Amazing. (laughs) \n[S2] Try it now on Git hub or Hugging Face."
|
| 264 |
+
example_txt_path = Path("./example.txt")
|
| 265 |
+
if example_txt_path.exists():
|
| 266 |
+
try:
|
| 267 |
+
default_text = example_txt_path.read_text(encoding="utf-8").strip()
|
| 268 |
+
if not default_text: # Handle empty example file
|
| 269 |
+
default_text = "Example text file was empty."
|
| 270 |
+
except Exception as e:
|
| 271 |
+
print(f"Warning: Could not read example.txt: {e}")
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
# Build Gradio UI
|
| 275 |
+
with gr.Blocks(css=css, theme="gradio/dark") as demo:
|
| 276 |
+
gr.Markdown("# Nari Text-to-Speech Synthesis")
|
| 277 |
+
|
| 278 |
+
with gr.Row(equal_height=False):
|
| 279 |
+
with gr.Column(scale=1):
|
| 280 |
+
with gr.Accordion("Audio Reference Prompt (Optional)", open=False):
|
| 281 |
+
audio_prompt_input = gr.Audio(
|
| 282 |
+
label="Audio Prompt (Optional)",
|
| 283 |
+
show_label=True,
|
| 284 |
+
sources=["upload", "microphone"],
|
| 285 |
+
type="numpy",
|
| 286 |
+
)
|
| 287 |
+
audio_prompt_text_input = gr.Textbox(
|
| 288 |
+
label="Transcript of Audio Prompt (Required if using Audio Prompt)",
|
| 289 |
+
placeholder="Enter text here...",
|
| 290 |
+
value="",
|
| 291 |
+
lines=5, # Increased lines
|
| 292 |
+
)
|
| 293 |
+
text_input = gr.Textbox(
|
| 294 |
+
label="Text To Generate",
|
| 295 |
+
placeholder="Enter text here...",
|
| 296 |
+
value=default_text,
|
| 297 |
+
lines=5, # Increased lines
|
| 298 |
+
)
|
| 299 |
+
with gr.Accordion("Generation Parameters", open=False):
|
| 300 |
+
max_new_tokens = gr.Slider(
|
| 301 |
+
label="Max New Tokens (Audio Length)",
|
| 302 |
+
minimum=860,
|
| 303 |
+
maximum=3072,
|
| 304 |
+
value=model.config.decoder_config.max_position_embeddings, # Use config default if available, else fallback
|
| 305 |
+
step=50,
|
| 306 |
+
info="Controls the maximum length of the generated audio (more tokens = longer audio).",
|
| 307 |
+
)
|
| 308 |
+
cfg_scale = gr.Slider(
|
| 309 |
+
label="CFG Scale (Guidance Strength)",
|
| 310 |
+
minimum=1.0,
|
| 311 |
+
maximum=5.0,
|
| 312 |
+
value=3.0, # Default from inference.py
|
| 313 |
+
step=0.1,
|
| 314 |
+
info="Higher values increase adherence to the text prompt.",
|
| 315 |
+
)
|
| 316 |
+
temperature = gr.Slider(
|
| 317 |
+
label="Temperature (Randomness)",
|
| 318 |
+
minimum=1.0,
|
| 319 |
+
maximum=2.5,
|
| 320 |
+
value=1.8, # Default from inference.py
|
| 321 |
+
step=0.05,
|
| 322 |
+
info="Lower values make the output more deterministic, higher values increase randomness.",
|
| 323 |
+
)
|
| 324 |
+
top_p = gr.Slider(
|
| 325 |
+
label="Top P (Nucleus Sampling)",
|
| 326 |
+
minimum=0.70,
|
| 327 |
+
maximum=1.0,
|
| 328 |
+
value=0.95, # Default from inference.py
|
| 329 |
+
step=0.01,
|
| 330 |
+
info="Filters vocabulary to the most likely tokens cumulatively reaching probability P.",
|
| 331 |
+
)
|
| 332 |
+
cfg_filter_top_k = gr.Slider(
|
| 333 |
+
label="CFG Filter Top K",
|
| 334 |
+
minimum=15,
|
| 335 |
+
maximum=100,
|
| 336 |
+
value=45,
|
| 337 |
+
step=1,
|
| 338 |
+
info="Top k filter for CFG guidance.",
|
| 339 |
+
)
|
| 340 |
+
speed_factor_slider = gr.Slider(
|
| 341 |
+
label="Speed Factor",
|
| 342 |
+
minimum=0.8,
|
| 343 |
+
maximum=1.0,
|
| 344 |
+
value=1.0,
|
| 345 |
+
step=0.02,
|
| 346 |
+
info="Adjusts the speed of the generated audio (1.0 = original speed).",
|
| 347 |
+
)
|
| 348 |
+
seed_input = gr.Number(
|
| 349 |
+
label="Generation Seed (Optional)",
|
| 350 |
+
value=-1,
|
| 351 |
+
precision=0, # No decimal points
|
| 352 |
+
step=1,
|
| 353 |
+
interactive=True,
|
| 354 |
+
info="Set a generation seed for reproducible outputs. Leave empty or -1 for random seed.",
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
run_button = gr.Button("Generate Audio", variant="primary")
|
| 358 |
+
|
| 359 |
+
with gr.Column(scale=1):
|
| 360 |
+
audio_output = gr.Audio(
|
| 361 |
+
label="Generated Audio",
|
| 362 |
+
type="numpy",
|
| 363 |
+
autoplay=False,
|
| 364 |
+
)
|
| 365 |
+
seed_output = gr.Textbox(label="Generation Seed", interactive=False)
|
| 366 |
+
console_output = gr.Textbox(label="Console Output Log", lines=10, interactive=False)
|
| 367 |
+
|
| 368 |
+
# Link button click to function
|
| 369 |
+
run_button.click(
|
| 370 |
+
fn=run_inference,
|
| 371 |
+
inputs=[
|
| 372 |
+
text_input,
|
| 373 |
+
audio_prompt_text_input,
|
| 374 |
+
audio_prompt_input,
|
| 375 |
+
max_new_tokens,
|
| 376 |
+
cfg_scale,
|
| 377 |
+
temperature,
|
| 378 |
+
top_p,
|
| 379 |
+
cfg_filter_top_k,
|
| 380 |
+
speed_factor_slider,
|
| 381 |
+
seed_input,
|
| 382 |
+
],
|
| 383 |
+
outputs=[
|
| 384 |
+
audio_output,
|
| 385 |
+
seed_output,
|
| 386 |
+
console_output,
|
| 387 |
+
], # Add status_output here if using it
|
| 388 |
+
api_name="generate_audio",
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
# Add examples (ensure the prompt path is correct or remove it if example file doesn't exist)
|
| 392 |
+
example_prompt_path = "./example_prompt.mp3" # Adjust if needed
|
| 393 |
+
examples_list = [
|
| 394 |
+
[
|
| 395 |
+
"[S1] Oh fire! Oh my goodness! What's the procedure? What to we do people? The smoke could be coming through an air duct! \n[S2] Oh my god! Okay.. it's happening. Everybody stay calm! \n[S1] What's the procedure... \n[S2] Everybody stay fucking calm!!!... Everybody fucking calm down!!!!! \n[S1] No! No! If you touch the handle, if its hot there might be a fire down the hallway! ",
|
| 396 |
+
None,
|
| 397 |
+
3072,
|
| 398 |
+
3.0,
|
| 399 |
+
1.8,
|
| 400 |
+
0.95,
|
| 401 |
+
45,
|
| 402 |
+
1.0,
|
| 403 |
+
],
|
| 404 |
+
[
|
| 405 |
+
"[S1] Open weights text to dialogue model. \n[S2] You get full control over scripts and voices. \n[S1] I'm biased, but I think we clearly won. \n[S2] Hard to disagree. (laughs) \n[S1] Thanks for listening to this demo. \n[S2] Try it now on Git hub and Hugging Face. \n[S1] If you liked our model, please give us a star and share to your friends. \n[S2] This was Nari Labs.",
|
| 406 |
+
example_prompt_path if Path(example_prompt_path).exists() else None,
|
| 407 |
+
3072,
|
| 408 |
+
3.0,
|
| 409 |
+
1.8,
|
| 410 |
+
0.95,
|
| 411 |
+
45,
|
| 412 |
+
1.0,
|
| 413 |
+
],
|
| 414 |
+
]
|
| 415 |
+
|
| 416 |
+
if examples_list:
|
| 417 |
+
gr.Examples(
|
| 418 |
+
examples=examples_list,
|
| 419 |
+
inputs=[
|
| 420 |
+
text_input,
|
| 421 |
+
audio_prompt_input,
|
| 422 |
+
max_new_tokens,
|
| 423 |
+
cfg_scale,
|
| 424 |
+
temperature,
|
| 425 |
+
top_p,
|
| 426 |
+
cfg_filter_top_k,
|
| 427 |
+
speed_factor_slider,
|
| 428 |
+
seed_input,
|
| 429 |
+
],
|
| 430 |
+
outputs=[audio_output],
|
| 431 |
+
fn=run_inference,
|
| 432 |
+
cache_examples=False,
|
| 433 |
+
label="Examples (Click to Run)",
|
| 434 |
+
)
|
| 435 |
+
else:
|
| 436 |
+
gr.Markdown("_(No examples configured or example prompt file missing)_")
|
| 437 |
+
|
| 438 |
+
# --- Launch the App ---
|
| 439 |
+
if __name__ == "__main__":
|
| 440 |
+
print("Launching Gradio interface...")
|
| 441 |
+
|
| 442 |
+
# set `GRADIO_SERVER_NAME`, `GRADIO_SERVER_PORT` env vars to override default values
|
| 443 |
+
# use `GRADIO_SERVER_NAME=0.0.0.0` for Docker
|
| 444 |
+
demo.launch(share=args.share)
|
cli.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import random
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import soundfile as sf
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
from dia.model import Dia
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def set_seed(seed: int):
|
| 13 |
+
"""Sets the random seed for reproducibility."""
|
| 14 |
+
random.seed(seed)
|
| 15 |
+
np.random.seed(seed)
|
| 16 |
+
torch.manual_seed(seed)
|
| 17 |
+
if torch.cuda.is_available():
|
| 18 |
+
torch.cuda.manual_seed(seed)
|
| 19 |
+
torch.cuda.manual_seed_all(seed)
|
| 20 |
+
# Ensure deterministic behavior for cuDNN (if used)
|
| 21 |
+
torch.backends.cudnn.deterministic = True
|
| 22 |
+
torch.backends.cudnn.benchmark = False
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def main():
|
| 26 |
+
parser = argparse.ArgumentParser(description="Generate audio using the Dia model.")
|
| 27 |
+
|
| 28 |
+
parser.add_argument("text", type=str, help="Input text for speech generation.")
|
| 29 |
+
parser.add_argument(
|
| 30 |
+
"--output", type=str, required=True, help="Path to save the generated audio file (e.g., output.wav)."
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
parser.add_argument(
|
| 34 |
+
"--repo-id",
|
| 35 |
+
type=str,
|
| 36 |
+
default="nari-labs/Dia-1.6B-0626",
|
| 37 |
+
help="Hugging Face repository ID (e.g., nari-labs/Dia-1.6B-0626).",
|
| 38 |
+
)
|
| 39 |
+
parser.add_argument(
|
| 40 |
+
"--local-paths", action="store_true", help="Load model from local config and checkpoint files."
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
parser.add_argument(
|
| 44 |
+
"--config", type=str, help="Path to local config.json file (required if --local-paths is set)."
|
| 45 |
+
)
|
| 46 |
+
parser.add_argument(
|
| 47 |
+
"--checkpoint", type=str, help="Path to local model checkpoint .pth file (required if --local-paths is set)."
|
| 48 |
+
)
|
| 49 |
+
parser.add_argument(
|
| 50 |
+
"--audio-prompt", type=str, default=None, help="Path to an optional audio prompt WAV file for voice cloning."
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
gen_group = parser.add_argument_group("Generation Parameters")
|
| 54 |
+
gen_group.add_argument(
|
| 55 |
+
"--max-tokens",
|
| 56 |
+
type=int,
|
| 57 |
+
default=None,
|
| 58 |
+
help="Maximum number of audio tokens to generate (defaults to config value).",
|
| 59 |
+
)
|
| 60 |
+
gen_group.add_argument(
|
| 61 |
+
"--cfg-scale", type=float, default=3.0, help="Classifier-Free Guidance scale (default: 3.0)."
|
| 62 |
+
)
|
| 63 |
+
gen_group.add_argument(
|
| 64 |
+
"--temperature", type=float, default=1.3, help="Sampling temperature (higher is more random, default: 0.7)."
|
| 65 |
+
)
|
| 66 |
+
gen_group.add_argument("--top-p", type=float, default=0.95, help="Nucleus sampling probability (default: 0.95).")
|
| 67 |
+
|
| 68 |
+
infra_group = parser.add_argument_group("Infrastructure")
|
| 69 |
+
infra_group.add_argument("--seed", type=int, default=None, help="Random seed for reproducibility.")
|
| 70 |
+
infra_group.add_argument(
|
| 71 |
+
"--device",
|
| 72 |
+
type=str,
|
| 73 |
+
default="cuda" if torch.cuda.is_available() else "cpu",
|
| 74 |
+
help="Device to run inference on (e.g., 'cuda', 'cpu', default: auto).",
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
args = parser.parse_args()
|
| 78 |
+
|
| 79 |
+
# Validation for local paths
|
| 80 |
+
if args.local_paths:
|
| 81 |
+
if not args.config:
|
| 82 |
+
parser.error("--config is required when --local-paths is set.")
|
| 83 |
+
if not args.checkpoint:
|
| 84 |
+
parser.error("--checkpoint is required when --local-paths is set.")
|
| 85 |
+
if not os.path.exists(args.config):
|
| 86 |
+
parser.error(f"Config file not found: {args.config}")
|
| 87 |
+
if not os.path.exists(args.checkpoint):
|
| 88 |
+
parser.error(f"Checkpoint file not found: {args.checkpoint}")
|
| 89 |
+
|
| 90 |
+
# Set seed if provided
|
| 91 |
+
if args.seed is not None:
|
| 92 |
+
set_seed(args.seed)
|
| 93 |
+
print(f"Using user-selected seed: {args.seed}")
|
| 94 |
+
|
| 95 |
+
# Determine device
|
| 96 |
+
device = torch.device(args.device)
|
| 97 |
+
print(f"Using device: {device}")
|
| 98 |
+
|
| 99 |
+
# Load model
|
| 100 |
+
print("Loading model...")
|
| 101 |
+
if args.local_paths:
|
| 102 |
+
print(f"Loading from local paths: config='{args.config}', checkpoint='{args.checkpoint}'")
|
| 103 |
+
try:
|
| 104 |
+
model = Dia.from_local(args.config, args.checkpoint, device=device)
|
| 105 |
+
except Exception as e:
|
| 106 |
+
print(f"Error loading local model: {e}")
|
| 107 |
+
exit(1)
|
| 108 |
+
else:
|
| 109 |
+
print(f"Loading from Hugging Face Hub: repo_id='{args.repo_id}'")
|
| 110 |
+
try:
|
| 111 |
+
model = Dia.from_pretrained(args.repo_id, device=device)
|
| 112 |
+
except Exception as e:
|
| 113 |
+
print(f"Error loading model from Hub: {e}")
|
| 114 |
+
exit(1)
|
| 115 |
+
print("Model loaded.")
|
| 116 |
+
|
| 117 |
+
# Generate audio
|
| 118 |
+
print("Generating audio...")
|
| 119 |
+
try:
|
| 120 |
+
sample_rate = 44100 # Default assumption
|
| 121 |
+
|
| 122 |
+
output_audio = model.generate(
|
| 123 |
+
text=args.text,
|
| 124 |
+
audio_prompt=args.audio_prompt,
|
| 125 |
+
max_tokens=args.max_tokens,
|
| 126 |
+
cfg_scale=args.cfg_scale,
|
| 127 |
+
temperature=args.temperature,
|
| 128 |
+
top_p=args.top_p,
|
| 129 |
+
)
|
| 130 |
+
print("Audio generation complete.")
|
| 131 |
+
|
| 132 |
+
print(f"Saving audio to {args.output}...")
|
| 133 |
+
os.makedirs(os.path.dirname(args.output) or ".", exist_ok=True)
|
| 134 |
+
|
| 135 |
+
sf.write(args.output, output_audio, sample_rate)
|
| 136 |
+
print(f"Audio successfully saved to {args.output}")
|
| 137 |
+
|
| 138 |
+
except Exception as e:
|
| 139 |
+
print(f"Error during audio generation or saving: {e}")
|
| 140 |
+
exit(1)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
if __name__ == "__main__":
|
| 144 |
+
main()
|
dia/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .model import Dia
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
__all__ = [
|
| 5 |
+
"Dia",
|
| 6 |
+
]
|
dia/audio.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import typing as tp
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def build_delay_indices(B: int, T: int, C: int, delay_pattern: tp.List[int]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
| 7 |
+
"""
|
| 8 |
+
Precompute (t_idx_BxTxC, indices_BTCx3) so that out[t, c] = in[t - delay[c], c].
|
| 9 |
+
Negative t_idx => BOS; t_idx >= T => PAD.
|
| 10 |
+
"""
|
| 11 |
+
delay_arr = torch.tensor(delay_pattern, dtype=torch.int32)
|
| 12 |
+
|
| 13 |
+
t_idx_BxT = torch.broadcast_to(
|
| 14 |
+
torch.arange(T, dtype=torch.int32)[None, :],
|
| 15 |
+
[B, T],
|
| 16 |
+
)
|
| 17 |
+
t_idx_BxTx1 = t_idx_BxT[..., None]
|
| 18 |
+
t_idx_BxTxC = t_idx_BxTx1 - delay_arr.view(1, 1, C)
|
| 19 |
+
|
| 20 |
+
b_idx_BxTxC = torch.broadcast_to(
|
| 21 |
+
torch.arange(B, dtype=torch.int32).view(B, 1, 1),
|
| 22 |
+
[B, T, C],
|
| 23 |
+
)
|
| 24 |
+
c_idx_BxTxC = torch.broadcast_to(
|
| 25 |
+
torch.arange(C, dtype=torch.int32).view(1, 1, C),
|
| 26 |
+
[B, T, C],
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# We must clamp time indices to [0..T-1] so gather_nd equivalent won't fail
|
| 30 |
+
t_clamped_BxTxC = torch.clamp(t_idx_BxTxC, 0, T - 1)
|
| 31 |
+
|
| 32 |
+
indices_BTCx3 = torch.stack(
|
| 33 |
+
[
|
| 34 |
+
b_idx_BxTxC.reshape(-1),
|
| 35 |
+
t_clamped_BxTxC.reshape(-1),
|
| 36 |
+
c_idx_BxTxC.reshape(-1),
|
| 37 |
+
],
|
| 38 |
+
dim=1,
|
| 39 |
+
).long() # Ensure indices are long type for indexing
|
| 40 |
+
|
| 41 |
+
return t_idx_BxTxC, indices_BTCx3
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def apply_audio_delay(
|
| 45 |
+
audio_BxTxC: torch.Tensor,
|
| 46 |
+
pad_value: int,
|
| 47 |
+
bos_value: int,
|
| 48 |
+
precomp: tp.Tuple[torch.Tensor, torch.Tensor],
|
| 49 |
+
) -> torch.Tensor:
|
| 50 |
+
"""
|
| 51 |
+
Applies the delay pattern to batched audio tokens using precomputed indices,
|
| 52 |
+
inserting BOS where t_idx < 0 and PAD where t_idx >= T.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
audio_BxTxC: [B, T, C] int16 audio tokens (or int32/float)
|
| 56 |
+
pad_value: the padding token
|
| 57 |
+
bos_value: the BOS token
|
| 58 |
+
precomp: (t_idx_BxTxC, indices_BTCx3) from build_delay_indices
|
| 59 |
+
|
| 60 |
+
Returns:
|
| 61 |
+
result_BxTxC: [B, T, C] delayed audio tokens
|
| 62 |
+
"""
|
| 63 |
+
device = audio_BxTxC.device # Get device from input tensor
|
| 64 |
+
t_idx_BxTxC, indices_BTCx3 = precomp
|
| 65 |
+
t_idx_BxTxC = t_idx_BxTxC.to(device) # Move precomputed indices to device
|
| 66 |
+
indices_BTCx3 = indices_BTCx3.to(device)
|
| 67 |
+
|
| 68 |
+
# Equivalent of tf.gather_nd using advanced indexing
|
| 69 |
+
# Ensure indices are long type if not already (build_delay_indices should handle this)
|
| 70 |
+
gathered_flat = audio_BxTxC[indices_BTCx3[:, 0], indices_BTCx3[:, 1], indices_BTCx3[:, 2]]
|
| 71 |
+
gathered_BxTxC = gathered_flat.view(audio_BxTxC.shape)
|
| 72 |
+
|
| 73 |
+
# Create masks on the correct device
|
| 74 |
+
mask_bos = t_idx_BxTxC < 0 # => place bos_value
|
| 75 |
+
mask_pad = t_idx_BxTxC >= audio_BxTxC.shape[1] # => place pad_value
|
| 76 |
+
|
| 77 |
+
# Create scalar tensors on the correct device
|
| 78 |
+
bos_tensor = torch.tensor(bos_value, dtype=audio_BxTxC.dtype, device=device)
|
| 79 |
+
pad_tensor = torch.tensor(pad_value, dtype=audio_BxTxC.dtype, device=device)
|
| 80 |
+
|
| 81 |
+
# If mask_bos, BOS; else if mask_pad, PAD; else original gather
|
| 82 |
+
# All tensors should now be on the same device
|
| 83 |
+
result_BxTxC = torch.where(mask_bos, bos_tensor, torch.where(mask_pad, pad_tensor, gathered_BxTxC))
|
| 84 |
+
|
| 85 |
+
return result_BxTxC
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def build_revert_indices(B: int, T: int, C: int, delay_pattern: tp.List[int]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
| 89 |
+
"""
|
| 90 |
+
Precompute indices for the revert operation using PyTorch.
|
| 91 |
+
|
| 92 |
+
Returns:
|
| 93 |
+
A tuple (t_idx_BxTxC, indices_BTCx3) where:
|
| 94 |
+
- t_idx_BxTxC is a tensor of shape [B, T, C] computed as time indices plus the delay.
|
| 95 |
+
- indices_BTCx3 is a tensor of shape [B*T*C, 3] used for gathering, computed from:
|
| 96 |
+
batch indices, clamped time indices, and channel indices.
|
| 97 |
+
"""
|
| 98 |
+
# Use default device unless specified otherwise; assumes inputs might define device later
|
| 99 |
+
device = None # Or determine dynamically if needed, e.g., from a model parameter
|
| 100 |
+
|
| 101 |
+
delay_arr = torch.tensor(delay_pattern, dtype=torch.int32, device=device)
|
| 102 |
+
|
| 103 |
+
t_idx_BT1 = torch.broadcast_to(torch.arange(T, device=device).unsqueeze(0), [B, T])
|
| 104 |
+
t_idx_BT1 = t_idx_BT1.unsqueeze(-1)
|
| 105 |
+
|
| 106 |
+
t_idx_BxTxC = torch.minimum(
|
| 107 |
+
t_idx_BT1 + delay_arr.view(1, 1, C),
|
| 108 |
+
torch.tensor(T - 1, device=device),
|
| 109 |
+
)
|
| 110 |
+
b_idx_BxTxC = torch.broadcast_to(torch.arange(B, device=device).view(B, 1, 1), [B, T, C])
|
| 111 |
+
c_idx_BxTxC = torch.broadcast_to(torch.arange(C, device=device).view(1, 1, C), [B, T, C])
|
| 112 |
+
|
| 113 |
+
indices_BTCx3 = torch.stack(
|
| 114 |
+
[
|
| 115 |
+
b_idx_BxTxC.reshape(-1),
|
| 116 |
+
t_idx_BxTxC.reshape(-1),
|
| 117 |
+
c_idx_BxTxC.reshape(-1),
|
| 118 |
+
],
|
| 119 |
+
axis=1,
|
| 120 |
+
).long() # Ensure indices are long type
|
| 121 |
+
|
| 122 |
+
return t_idx_BxTxC, indices_BTCx3
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def revert_audio_delay(
|
| 126 |
+
audio_BxTxC: torch.Tensor,
|
| 127 |
+
pad_value: int,
|
| 128 |
+
precomp: tp.Tuple[torch.Tensor, torch.Tensor],
|
| 129 |
+
T: int,
|
| 130 |
+
) -> torch.Tensor:
|
| 131 |
+
"""
|
| 132 |
+
Reverts a delay pattern from batched audio tokens using precomputed indices (PyTorch version).
|
| 133 |
+
|
| 134 |
+
Args:
|
| 135 |
+
audio_BxTxC: Input delayed audio tensor
|
| 136 |
+
pad_value: Padding value for out-of-bounds indices
|
| 137 |
+
precomp: Precomputed revert indices tuple containing:
|
| 138 |
+
- t_idx_BxTxC: Time offset indices tensor
|
| 139 |
+
- indices_BTCx3: Gather indices tensor for original audio
|
| 140 |
+
T: Original sequence length before padding
|
| 141 |
+
|
| 142 |
+
Returns:
|
| 143 |
+
Reverted audio tensor with same shape as input
|
| 144 |
+
"""
|
| 145 |
+
t_idx_BxTxC, indices_BTCx3 = precomp
|
| 146 |
+
device = audio_BxTxC.device # Get device from input tensor
|
| 147 |
+
|
| 148 |
+
# Move precomputed indices to the same device as audio_BxTxC if they aren't already
|
| 149 |
+
t_idx_BxTxC = t_idx_BxTxC.to(device)
|
| 150 |
+
indices_BTCx3 = indices_BTCx3.to(device)
|
| 151 |
+
|
| 152 |
+
# Using PyTorch advanced indexing (equivalent to tf.gather_nd or np equivalent)
|
| 153 |
+
gathered_flat = audio_BxTxC[indices_BTCx3[:, 0], indices_BTCx3[:, 1], indices_BTCx3[:, 2]]
|
| 154 |
+
gathered_BxTxC = gathered_flat.view(audio_BxTxC.size()) # Use .size() for robust reshaping
|
| 155 |
+
|
| 156 |
+
# Create pad_tensor on the correct device
|
| 157 |
+
pad_tensor = torch.tensor(pad_value, dtype=audio_BxTxC.dtype, device=device)
|
| 158 |
+
# Create T tensor on the correct device for comparison
|
| 159 |
+
T_tensor = torch.tensor(T, device=device)
|
| 160 |
+
|
| 161 |
+
result_BxTxC = torch.where(t_idx_BxTxC >= T_tensor, pad_tensor, gathered_BxTxC) # Changed np.where to torch.where
|
| 162 |
+
|
| 163 |
+
return result_BxTxC
|
dia/config.py
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Configuration management module for the Dia model.
|
| 2 |
+
|
| 3 |
+
This module provides comprehensive configuration management for the Dia model,
|
| 4 |
+
utilizing Pydantic for validation. It defines configurations for data processing,
|
| 5 |
+
model architecture (encoder and decoder), and training settings.
|
| 6 |
+
|
| 7 |
+
Key components:
|
| 8 |
+
- DataConfig: Parameters for data loading and preprocessing.
|
| 9 |
+
- EncoderConfig: Architecture details for the encoder module.
|
| 10 |
+
- DecoderConfig: Architecture details for the decoder module.
|
| 11 |
+
- ModelConfig: Combined model architecture settings.
|
| 12 |
+
- TrainingConfig: Training hyperparameters and settings.
|
| 13 |
+
- DiaConfig: Master configuration combining all components.
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
import os
|
| 17 |
+
|
| 18 |
+
from pydantic import BaseModel, Field
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class EncoderConfig(BaseModel, frozen=True):
|
| 22 |
+
"""Configuration for the encoder component of the Dia model.
|
| 23 |
+
|
| 24 |
+
Attributes:
|
| 25 |
+
model_type: Type of the model, defaults to "dia_encoder".
|
| 26 |
+
hidden_size: Size of the encoder layers, defaults to 1024.
|
| 27 |
+
intermediate_size: Size of the "intermediate" (i.e., feed-forward) layer in the encoder, defaults to 4096.
|
| 28 |
+
num_hidden_layers: Number of hidden layers in the encoder, defaults to 12.
|
| 29 |
+
num_attention_heads: Number of attention heads in the encoder, defaults to 16.
|
| 30 |
+
num_key_value_heads: Number of key-value heads in the encoder, defaults to 16.
|
| 31 |
+
head_dim: Dimension of each attention head, defaults to 128.
|
| 32 |
+
hidden_act: Activation function in the encoder, defaults to "silu".
|
| 33 |
+
max_position_embeddings: Maximum number of position embeddings, defaults to 1024.
|
| 34 |
+
initializer_range: Range for initializing weights, defaults to 0.02.
|
| 35 |
+
norm_eps: Epsilon value for normalization layers, defaults to 1e-5.
|
| 36 |
+
rope_theta: Theta value for RoPE, defaults to 10000.0.
|
| 37 |
+
rope_scaling: Optional scaling factor for RoPE.
|
| 38 |
+
vocab_size: Vocabulary size, defaults to 256.
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
head_dim: int = Field(default=128, gt=0)
|
| 42 |
+
hidden_act: str = Field(default="silu")
|
| 43 |
+
hidden_size: int = Field(default=1024, gt=0)
|
| 44 |
+
initializer_range: float = Field(default=0.02)
|
| 45 |
+
intermediate_size: int = Field(default=4096, gt=0)
|
| 46 |
+
max_position_embeddings: int = Field(default=1024, gt=0)
|
| 47 |
+
model_type: str = Field(default="dia_encoder")
|
| 48 |
+
norm_eps: float = Field(default=1e-5)
|
| 49 |
+
num_attention_heads: int = Field(default=16, gt=0)
|
| 50 |
+
num_hidden_layers: int = Field(default=12, gt=0)
|
| 51 |
+
num_key_value_heads: int = Field(default=16, gt=0)
|
| 52 |
+
rope_scaling: float | None = Field(default=None)
|
| 53 |
+
rope_theta: float = Field(default=10000.0)
|
| 54 |
+
vocab_size: int = Field(default=256, gt=0)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class DecoderConfig(BaseModel, frozen=True):
|
| 58 |
+
"""Configuration for the decoder component of the Dia model.
|
| 59 |
+
|
| 60 |
+
Attributes:
|
| 61 |
+
model_type: Type of the model, defaults to "dia_decoder".
|
| 62 |
+
hidden_size: Size of the decoder layers, defaults to 2048.
|
| 63 |
+
intermediate_size: Size of the "intermediate" (i.e., feed-forward) layer in the decoder, defaults to 8192.
|
| 64 |
+
num_hidden_layers: Number of hidden layers in the decoder, defaults to 18.
|
| 65 |
+
num_attention_heads: Number of attention heads in the decoder, defaults to 16.
|
| 66 |
+
num_key_value_heads: Number of key-value heads in the decoder, defaults to 4.
|
| 67 |
+
head_dim: Dimension of each attention head, defaults to 128.
|
| 68 |
+
cross_hidden_size: Size of the cross-attention layers, defaults to 1024.
|
| 69 |
+
cross_num_attention_heads: Number of attention heads in the cross-attention mechanism, defaults to 16.
|
| 70 |
+
cross_num_key_value_heads: Number of key-value heads in the cross-attention mechanism, defaults to 16.
|
| 71 |
+
cross_head_dim: Dimension of each cross-attention head, defaults to 128.
|
| 72 |
+
hidden_act: Activation function in the decoder, defaults to "silu".
|
| 73 |
+
max_position_embeddings: Maximum number of position embeddings in the decoder, defaults to 3072.
|
| 74 |
+
initializer_range: Range for initializing weights in the decoder, defaults to 0.02.
|
| 75 |
+
norm_eps: Epsilon value for normalization layers in the decoder, defaults to 1e-5.
|
| 76 |
+
rope_theta: Theta value for RoPE in the decoder, defaults to 10000.0.
|
| 77 |
+
rope_scaling: Optional scaling factor for RoPE in the decoder.
|
| 78 |
+
vocab_size: Vocabulary size for the decoder, defaults to 1028.
|
| 79 |
+
num_channels: Number of channels in the decoder, defaults to 9.
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
cross_head_dim: int = Field(default=128, gt=0)
|
| 83 |
+
cross_hidden_size: int = Field(default=1024, gt=0)
|
| 84 |
+
cross_num_attention_heads: int = Field(default=16, gt=0)
|
| 85 |
+
cross_num_key_value_heads: int = Field(default=16, gt=0)
|
| 86 |
+
head_dim: int = Field(default=128, gt=0)
|
| 87 |
+
hidden_act: str = Field(default="silu")
|
| 88 |
+
hidden_size: int = Field(default=2048, gt=0)
|
| 89 |
+
initializer_range: float = Field(default=0.02)
|
| 90 |
+
intermediate_size: int = Field(default=8192, gt=0)
|
| 91 |
+
max_position_embeddings: int = Field(default=3072, gt=0)
|
| 92 |
+
model_type: str = Field(default="dia_decoder")
|
| 93 |
+
norm_eps: float = Field(default=1e-5)
|
| 94 |
+
num_attention_heads: int = Field(default=16, gt=0)
|
| 95 |
+
num_channels: int = Field(default=9, gt=0)
|
| 96 |
+
num_hidden_layers: int = Field(default=18, gt=0)
|
| 97 |
+
num_key_value_heads: int = Field(default=4, gt=0)
|
| 98 |
+
rope_scaling: float | None = Field(default=None)
|
| 99 |
+
rope_theta: float = Field(default=10000.0)
|
| 100 |
+
vocab_size: int = Field(default=1028, gt=0)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
class DiaConfig(BaseModel, frozen=True):
|
| 104 |
+
"""Main configuration container for the Dia model architecture.
|
| 105 |
+
|
| 106 |
+
Attributes:
|
| 107 |
+
model_type: Type of the model, defaults to "dia".
|
| 108 |
+
is_encoder_decoder: Flag indicating if the model is an encoder-decoder type, defaults to True.
|
| 109 |
+
encoder: Configuration for the encoder component.
|
| 110 |
+
decoder: Configuration for the decoder component.
|
| 111 |
+
src_vocab_size: Size of the source (text) vocabulary.
|
| 112 |
+
tgt_vocab_size: Size of the target (audio code) vocabulary.
|
| 113 |
+
initializer_range: Range for initializing weights, defaults to 0.02.
|
| 114 |
+
norm_eps: Epsilon value for normalization layers, defaults to 1e-5.
|
| 115 |
+
torch_dtype: Data type for model weights in PyTorch, defaults to "float32".
|
| 116 |
+
bos_token_id: Beginning-of-sequence token ID, defaults to 1026.
|
| 117 |
+
eos_token_id: End-of-sequence token ID, defaults to 1024.
|
| 118 |
+
pad_token_id: Padding token ID, defaults to 1025.
|
| 119 |
+
rope_theta: Theta value for RoPE, defaults to 10000.0.
|
| 120 |
+
rope_scaling: Optional scaling factor for RoPE.
|
| 121 |
+
transformers_version: Version of the transformers library, defaults to "4.53.0.dev0".
|
| 122 |
+
architectures: List of model architectures, defaults to ["DiaForConditionalGeneration"].
|
| 123 |
+
delay_pattern: List of delay values for each audio channel, defaults to [0,8,9,10,11,12,13,14,15].
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
architectures: list[str] = Field(default_factory=lambda: ["DiaForConditionalGeneration"])
|
| 127 |
+
bos_token_id: int = Field(default=1026)
|
| 128 |
+
decoder_config: DecoderConfig
|
| 129 |
+
delay_pattern: list[int] = Field(default_factory=lambda: [0, 8, 9, 10, 11, 12, 13, 14, 15])
|
| 130 |
+
encoder_config: EncoderConfig
|
| 131 |
+
eos_token_id: int = Field(default=1024)
|
| 132 |
+
initializer_range: float = Field(default=0.02)
|
| 133 |
+
is_encoder_decoder: bool = Field(default=True)
|
| 134 |
+
model_type: str = Field(default="dia")
|
| 135 |
+
norm_eps: float = Field(default=1e-5)
|
| 136 |
+
pad_token_id: int = Field(default=1025)
|
| 137 |
+
torch_dtype: str = Field(default="float32")
|
| 138 |
+
transformers_version: str = Field(default="4.53.0.dev0")
|
| 139 |
+
|
| 140 |
+
def save(self, path: str) -> None:
|
| 141 |
+
"""Save the current configuration instance to a JSON file.
|
| 142 |
+
|
| 143 |
+
Ensures the parent directory exists and the file has a .json extension.
|
| 144 |
+
|
| 145 |
+
Args:
|
| 146 |
+
path: The target file path to save the configuration.
|
| 147 |
+
|
| 148 |
+
Raises:
|
| 149 |
+
ValueError: If the path is not a file with a .json extension.
|
| 150 |
+
"""
|
| 151 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 152 |
+
config_json = self.model_dump_json(indent=2)
|
| 153 |
+
with open(path, "w") as f:
|
| 154 |
+
f.write(config_json)
|
| 155 |
+
|
| 156 |
+
@classmethod
|
| 157 |
+
def load(cls, path: str) -> "DiaConfig | None":
|
| 158 |
+
"""Load and validate a Dia configuration from a JSON file.
|
| 159 |
+
|
| 160 |
+
Args:
|
| 161 |
+
path: The path to the configuration file.
|
| 162 |
+
|
| 163 |
+
Returns:
|
| 164 |
+
A validated DiaConfig instance if the file exists and is valid,
|
| 165 |
+
otherwise None if the file is not found.
|
| 166 |
+
|
| 167 |
+
Raises:
|
| 168 |
+
ValueError: If the path does not point to an existing .json file.
|
| 169 |
+
pydantic.ValidationError: If the JSON content fails validation against the DiaConfig schema.
|
| 170 |
+
"""
|
| 171 |
+
try:
|
| 172 |
+
with open(path, "r") as f:
|
| 173 |
+
content = f.read()
|
| 174 |
+
return cls.model_validate_json(content)
|
| 175 |
+
except FileNotFoundError:
|
| 176 |
+
return None
|
dia/layers.py
ADDED
|
@@ -0,0 +1,888 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 5 |
+
from torch import Tensor
|
| 6 |
+
from torch.nn import RMSNorm
|
| 7 |
+
|
| 8 |
+
from .config import DecoderConfig, DiaConfig, EncoderConfig
|
| 9 |
+
from .state import DecoderInferenceState, EncoderInferenceState, KVCache
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def _normalize_axes(axes: tuple[int, ...], ndim: int) -> tuple[int, ...]:
|
| 13 |
+
return tuple(ax if ax >= 0 else ndim + ax for ax in axes)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class DenseGeneral(nn.Module):
|
| 17 |
+
"""
|
| 18 |
+
PyTorch equivalent of flax.linen.DenseGeneral with shapes defined at init.
|
| 19 |
+
Stores weights (`kernel`) in the same layout as Jax and uses torch.tensordot
|
| 20 |
+
for the generalized matrix multiplication. Weight/bias shapes are calculated
|
| 21 |
+
and parameters created during initialization based on config.
|
| 22 |
+
`load_weights` validates shapes and copies data.
|
| 23 |
+
Attributes:
|
| 24 |
+
axis (Tuple[int, ...]): Input axis or axes to contract.
|
| 25 |
+
in_shapes (Tuple[int, ...]): Sizes of the input dimensions specified by `axis`.
|
| 26 |
+
out_features (Tuple[int, ...]): Shape of the output features (non-contracted dims).
|
| 27 |
+
use_bias (bool): Whether to add a bias term.
|
| 28 |
+
weight (nn.Parameter): The kernel parameter.
|
| 29 |
+
bias (Optional[nn.Parameter]): The bias parameter (if use_bias=True).
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
in_shapes: tuple[int, ...],
|
| 35 |
+
out_features: tuple[int, ...],
|
| 36 |
+
axis: tuple[int, ...] = (-1,),
|
| 37 |
+
weight_dtype: torch.dtype | None = None,
|
| 38 |
+
device: torch.device | None = None,
|
| 39 |
+
):
|
| 40 |
+
super().__init__()
|
| 41 |
+
self.in_shapes = in_shapes
|
| 42 |
+
self.out_features = out_features
|
| 43 |
+
self.axis = axis
|
| 44 |
+
self.kernel_shape = self.in_shapes + self.out_features
|
| 45 |
+
|
| 46 |
+
factory_kwargs = {"device": device, "dtype": weight_dtype}
|
| 47 |
+
self.weight = nn.Parameter(torch.empty(self.kernel_shape, **factory_kwargs))
|
| 48 |
+
|
| 49 |
+
def forward(self, inputs: Tensor) -> Tensor:
|
| 50 |
+
norm_axis = _normalize_axes(self.axis, inputs.ndim)
|
| 51 |
+
kernel_contract_axes = tuple(range(len(norm_axis)))
|
| 52 |
+
|
| 53 |
+
output = torch.tensordot(
|
| 54 |
+
inputs.to(self.weight.dtype),
|
| 55 |
+
self.weight,
|
| 56 |
+
dims=(norm_axis, kernel_contract_axes),
|
| 57 |
+
).to(inputs.dtype)
|
| 58 |
+
return output
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class MlpBlock(nn.Module):
|
| 62 |
+
"""MLP block using DenseGeneral."""
|
| 63 |
+
|
| 64 |
+
def __init__(self, embed_dim: int, intermediate_dim: int, compute_dtype: torch.dtype):
|
| 65 |
+
super().__init__()
|
| 66 |
+
self.dtype = compute_dtype
|
| 67 |
+
|
| 68 |
+
self.wi_fused = DenseGeneral(
|
| 69 |
+
in_shapes=(embed_dim,),
|
| 70 |
+
out_features=(2, intermediate_dim),
|
| 71 |
+
axis=(-1,),
|
| 72 |
+
weight_dtype=compute_dtype,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
self.wo = DenseGeneral(
|
| 76 |
+
in_shapes=(intermediate_dim,),
|
| 77 |
+
out_features=(embed_dim,),
|
| 78 |
+
axis=(-1,),
|
| 79 |
+
weight_dtype=compute_dtype,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 83 |
+
"""Forward pass."""
|
| 84 |
+
fused_x = self.wi_fused(x)
|
| 85 |
+
|
| 86 |
+
gate = fused_x[..., 0, :]
|
| 87 |
+
up = fused_x[..., 1, :]
|
| 88 |
+
|
| 89 |
+
hidden = torch.mul(F.silu(gate), up).to(self.dtype)
|
| 90 |
+
|
| 91 |
+
output = self.wo(hidden)
|
| 92 |
+
return output
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class RotaryEmbedding(nn.Module):
|
| 96 |
+
"""Rotary Position Embedding (RoPE) implementation in PyTorch."""
|
| 97 |
+
|
| 98 |
+
def __init__(
|
| 99 |
+
self,
|
| 100 |
+
embedding_dims: int,
|
| 101 |
+
min_timescale: float = 1.0,
|
| 102 |
+
max_timescale: float = 10000.0,
|
| 103 |
+
dtype: torch.dtype = torch.float32,
|
| 104 |
+
):
|
| 105 |
+
super().__init__()
|
| 106 |
+
if embedding_dims % 2 != 0:
|
| 107 |
+
raise ValueError("Embedding dim must be even for RoPE.")
|
| 108 |
+
self.embedding_dims = embedding_dims
|
| 109 |
+
self.min_timescale = min_timescale
|
| 110 |
+
self.max_timescale = max_timescale
|
| 111 |
+
self.compute_dtype = dtype
|
| 112 |
+
|
| 113 |
+
half_embedding_dim = embedding_dims // 2
|
| 114 |
+
fraction = (2.0 * torch.arange(0, half_embedding_dim)) / embedding_dims
|
| 115 |
+
timescale = (self.min_timescale * (self.max_timescale / self.min_timescale) ** fraction).to(torch.float32)
|
| 116 |
+
self.register_buffer("timescale", timescale, persistent=False)
|
| 117 |
+
|
| 118 |
+
def forward(self, inputs: torch.Tensor, position: torch.Tensor):
|
| 119 |
+
"""Applies RoPE."""
|
| 120 |
+
position = position.unsqueeze(-1).unsqueeze(-1)
|
| 121 |
+
sinusoid_inp = position / self.timescale
|
| 122 |
+
sin = torch.sin(sinusoid_inp)
|
| 123 |
+
cos = torch.cos(sinusoid_inp)
|
| 124 |
+
first_half, second_half = torch.chunk(inputs.to(torch.float32), 2, dim=-1)
|
| 125 |
+
first_part = first_half * cos - second_half * sin
|
| 126 |
+
second_part = second_half * cos + first_half * sin
|
| 127 |
+
return torch.cat(
|
| 128 |
+
(first_part.to(self.compute_dtype), second_part.to(self.compute_dtype)),
|
| 129 |
+
dim=-1,
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
def apply_rope(self, inputs: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor):
|
| 133 |
+
first_half, second_half = torch.chunk(inputs.to(torch.float32), 2, dim=-1)
|
| 134 |
+
first_part = first_half * cos - second_half * sin
|
| 135 |
+
second_part = second_half * cos + first_half * sin
|
| 136 |
+
return torch.cat((first_part.to(self.compute_dtype), second_part.to(self.compute_dtype)), dim=-1)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def custom_scaled_dot_product_attention(
|
| 140 |
+
query: torch.Tensor,
|
| 141 |
+
key: torch.Tensor,
|
| 142 |
+
value: torch.Tensor,
|
| 143 |
+
attn_mask: torch.Tensor | None = None,
|
| 144 |
+
scale: float = 1.0,
|
| 145 |
+
is_causal: bool = False,
|
| 146 |
+
num_gqa_groups: int = 1,
|
| 147 |
+
) -> torch.Tensor:
|
| 148 |
+
"""
|
| 149 |
+
Custom scaled dot-product attention with GQA support for MPS compatibility.
|
| 150 |
+
|
| 151 |
+
Args:
|
| 152 |
+
query: (B, N_q, T, H) - Query tensor, N_q = num_query_heads
|
| 153 |
+
key: (B, N_kv, S, H) - Key tensor, N_kv = num_kv_heads
|
| 154 |
+
value: (B, N_kv, S, H) - Value tensor
|
| 155 |
+
attn_mask: (B, 1, T, S) - Attention mask, optional
|
| 156 |
+
scale: Scaling factor for attention scores
|
| 157 |
+
is_causal: If True, apply causal masking
|
| 158 |
+
num_gqa_groups: Number of query groups per KV head (N_q / N_kv)
|
| 159 |
+
|
| 160 |
+
Returns:
|
| 161 |
+
output: (B, N_q, T, H) - Attention output
|
| 162 |
+
"""
|
| 163 |
+
B, N_q, T, H = query.shape
|
| 164 |
+
_, N_kv, S, _ = key.shape
|
| 165 |
+
|
| 166 |
+
# For GQA, repeat key and value tensors to match query heads
|
| 167 |
+
if num_gqa_groups > 1:
|
| 168 |
+
key = key.repeat_interleave(num_gqa_groups, dim=1) # (B, N_q, S, H)
|
| 169 |
+
value = value.repeat_interleave(num_gqa_groups, dim=1) # (B, N_q, S, H)
|
| 170 |
+
|
| 171 |
+
# Compute attention scores: (B, N_q, T, H) @ (B, N_q, H, S) -> (B, N_q, T, S)
|
| 172 |
+
scores = torch.matmul(query, key.transpose(-1, -2)) * scale
|
| 173 |
+
|
| 174 |
+
# Apply causal mask if needed
|
| 175 |
+
if is_causal:
|
| 176 |
+
causal_mask = torch.tril(torch.ones(T, S, dtype=torch.bool, device=query.device))
|
| 177 |
+
scores = scores.masked_fill(~causal_mask, float("-inf"))
|
| 178 |
+
|
| 179 |
+
# Apply attention mask if provided
|
| 180 |
+
if attn_mask is not None:
|
| 181 |
+
scores = scores.masked_fill(~attn_mask, float("-inf"))
|
| 182 |
+
|
| 183 |
+
# Softmax over the last dimension (S)
|
| 184 |
+
attn_weights = F.softmax(scores, dim=-1)
|
| 185 |
+
|
| 186 |
+
# Compute output: (B, N_q, T, S) @ (B, N_q, S, H) -> (B, N_q, T, H)
|
| 187 |
+
output = torch.matmul(attn_weights, value)
|
| 188 |
+
|
| 189 |
+
return output
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
class CrossAttention(nn.Module):
|
| 193 |
+
"""Cross-Attention using DenseGeneral."""
|
| 194 |
+
|
| 195 |
+
def __init__(
|
| 196 |
+
self,
|
| 197 |
+
config: EncoderConfig | DecoderConfig,
|
| 198 |
+
q_embed_dim: int,
|
| 199 |
+
kv_embed_dim: int,
|
| 200 |
+
num_query_heads: int,
|
| 201 |
+
num_kv_heads: int,
|
| 202 |
+
head_dim: int,
|
| 203 |
+
compute_dtype: torch.dtype,
|
| 204 |
+
out_embed_dim: int | None = None,
|
| 205 |
+
):
|
| 206 |
+
super().__init__()
|
| 207 |
+
self.num_query_heads = num_query_heads
|
| 208 |
+
self.num_kv_heads = num_kv_heads
|
| 209 |
+
self.head_dim = head_dim
|
| 210 |
+
self.output_dim = out_embed_dim if out_embed_dim is not None else q_embed_dim
|
| 211 |
+
self.projected_query_dim = num_query_heads * head_dim
|
| 212 |
+
if num_query_heads % num_kv_heads != 0:
|
| 213 |
+
raise ValueError(f"num_query_heads ({num_query_heads}) must be divisible by num_kv_heads ({num_kv_heads})")
|
| 214 |
+
self.num_gqa_groups = num_query_heads // num_kv_heads
|
| 215 |
+
|
| 216 |
+
# --- Projection Layers using DenseGeneral ---
|
| 217 |
+
self.q_proj = DenseGeneral(
|
| 218 |
+
in_shapes=(q_embed_dim,),
|
| 219 |
+
out_features=(num_query_heads, head_dim),
|
| 220 |
+
axis=(-1,),
|
| 221 |
+
weight_dtype=compute_dtype,
|
| 222 |
+
)
|
| 223 |
+
self.k_proj = DenseGeneral(
|
| 224 |
+
in_shapes=(kv_embed_dim,),
|
| 225 |
+
out_features=(num_kv_heads, head_dim),
|
| 226 |
+
axis=(-1,),
|
| 227 |
+
weight_dtype=compute_dtype,
|
| 228 |
+
)
|
| 229 |
+
self.v_proj = DenseGeneral(
|
| 230 |
+
in_shapes=(kv_embed_dim,),
|
| 231 |
+
out_features=(num_kv_heads, head_dim),
|
| 232 |
+
axis=(-1,),
|
| 233 |
+
weight_dtype=compute_dtype,
|
| 234 |
+
)
|
| 235 |
+
self.o_proj = DenseGeneral(
|
| 236 |
+
in_shapes=(num_query_heads, head_dim),
|
| 237 |
+
out_features=(self.output_dim,),
|
| 238 |
+
axis=(-2, -1),
|
| 239 |
+
weight_dtype=compute_dtype,
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
# --- Rotary Embedding ---
|
| 243 |
+
self.rotary_emb = RotaryEmbedding(
|
| 244 |
+
embedding_dims=self.head_dim,
|
| 245 |
+
max_timescale=config.rope_theta,
|
| 246 |
+
dtype=compute_dtype,
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
def forward(
|
| 250 |
+
self,
|
| 251 |
+
Xq: torch.Tensor, # (B, T, D) T = 1 in AR generation
|
| 252 |
+
q_positions: torch.Tensor, # (B, T)
|
| 253 |
+
kv_positions: torch.Tensor | None = None, # (B, S)
|
| 254 |
+
attn_mask: torch.Tensor | None = None, # None in Decoder Self Attention, Valid mask in Others
|
| 255 |
+
cache: KVCache | None = None, # None in Encoder, KVCache in Decoder
|
| 256 |
+
is_causal: bool = False,
|
| 257 |
+
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
|
| 258 |
+
"""
|
| 259 |
+
Performs attention calculation with optional KV caching.
|
| 260 |
+
|
| 261 |
+
Args:
|
| 262 |
+
Xq: Query tensor (B, T, D). T=1 during single-step decoding.
|
| 263 |
+
Xkv: Key/Value source tensor (B, S, E). S=1 during single-step decoding for self-attn.
|
| 264 |
+
q_positions: Positions for queries (B, T).
|
| 265 |
+
kv_positions: Positions for keys/values (B, S). If None, uses q_positions.
|
| 266 |
+
attn_mask: Attention mask.
|
| 267 |
+
cache: KVCache.
|
| 268 |
+
|
| 269 |
+
Returns:
|
| 270 |
+
A tuple containing:
|
| 271 |
+
- output: The attention output tensor (B, T, output_dim).
|
| 272 |
+
- present_kv: The K/V state to be cached for the next step ((B, N, S_new, H), (B, N, S_new, H)). For self-attn, S_new = S_past + S. For cross-attn, S_new = S_kv.
|
| 273 |
+
"""
|
| 274 |
+
if kv_positions is None:
|
| 275 |
+
kv_positions = q_positions
|
| 276 |
+
original_dtype = Xq.dtype
|
| 277 |
+
|
| 278 |
+
Xq_BxTxNxH = self.q_proj(Xq)
|
| 279 |
+
Xq_BxNxTxH = Xq_BxTxNxH.transpose(1, 2)
|
| 280 |
+
|
| 281 |
+
attn_k: torch.Tensor | None = cache.k if cache is not None else None
|
| 282 |
+
attn_v: torch.Tensor | None = cache.v if cache is not None else None
|
| 283 |
+
|
| 284 |
+
# Use custom attention for MPS backend, otherwise use optimized PyTorch function
|
| 285 |
+
is_mps = Xq.device.type == "mps" and torch.backends.mps.is_available()
|
| 286 |
+
if is_mps:
|
| 287 |
+
attn_output = custom_scaled_dot_product_attention(
|
| 288 |
+
query=Xq_BxNxTxH,
|
| 289 |
+
key=attn_k,
|
| 290 |
+
value=attn_v,
|
| 291 |
+
attn_mask=attn_mask if not is_causal else None,
|
| 292 |
+
scale=1.0,
|
| 293 |
+
is_causal=is_causal,
|
| 294 |
+
num_gqa_groups=self.num_gqa_groups,
|
| 295 |
+
)
|
| 296 |
+
else:
|
| 297 |
+
attn_output = F.scaled_dot_product_attention(
|
| 298 |
+
Xq_BxNxTxH,
|
| 299 |
+
attn_k,
|
| 300 |
+
attn_v,
|
| 301 |
+
attn_mask=attn_mask if not is_causal else None,
|
| 302 |
+
scale=1.0,
|
| 303 |
+
enable_gqa=self.num_gqa_groups > 1,
|
| 304 |
+
is_causal=is_causal,
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
attn_output = attn_output.transpose(1, 2).contiguous() # (B, T, N, H)
|
| 308 |
+
output = self.o_proj(attn_output)
|
| 309 |
+
|
| 310 |
+
return output.to(original_dtype)
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
class FusedQKV(nn.Module):
|
| 314 |
+
def __init__(
|
| 315 |
+
self,
|
| 316 |
+
in_features: int,
|
| 317 |
+
out_features: int,
|
| 318 |
+
bias: bool = False,
|
| 319 |
+
num_q_heads: int = 1,
|
| 320 |
+
q_head_dim: int = 1,
|
| 321 |
+
num_kv_heads: int = 1,
|
| 322 |
+
kv_head_dim: int = 1,
|
| 323 |
+
):
|
| 324 |
+
super().__init__()
|
| 325 |
+
self.num_q_heads = num_q_heads
|
| 326 |
+
self.q_head_dim = q_head_dim
|
| 327 |
+
self.num_kv_heads = num_kv_heads
|
| 328 |
+
self.kv_head_dim = kv_head_dim
|
| 329 |
+
self.q_output_dim = num_q_heads * q_head_dim
|
| 330 |
+
self.kv_output_dim = num_kv_heads * kv_head_dim
|
| 331 |
+
self.linear = nn.Linear(in_features, out_features, bias=bias)
|
| 332 |
+
|
| 333 |
+
def forward(self, inputs: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 334 |
+
x = self.linear(inputs)
|
| 335 |
+
|
| 336 |
+
q, k, v = x.split([self.q_output_dim, self.kv_output_dim, self.kv_output_dim], dim=-1)
|
| 337 |
+
|
| 338 |
+
q = q.reshape(q.shape[:-1] + (self.num_q_heads, self.q_head_dim))
|
| 339 |
+
k = k.reshape(k.shape[:-1] + (self.num_kv_heads, self.kv_head_dim))
|
| 340 |
+
v = v.reshape(v.shape[:-1] + (self.num_kv_heads, self.kv_head_dim))
|
| 341 |
+
|
| 342 |
+
return q, k, v
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
class SelfAttention(nn.Module):
|
| 346 |
+
"""Attention using DenseGeneral."""
|
| 347 |
+
|
| 348 |
+
def __init__(
|
| 349 |
+
self,
|
| 350 |
+
config: EncoderConfig | DecoderConfig,
|
| 351 |
+
q_embed_dim: int,
|
| 352 |
+
kv_embed_dim: int,
|
| 353 |
+
num_query_heads: int,
|
| 354 |
+
num_kv_heads: int,
|
| 355 |
+
head_dim: int,
|
| 356 |
+
compute_dtype: torch.dtype,
|
| 357 |
+
out_embed_dim: int | None = None,
|
| 358 |
+
):
|
| 359 |
+
super().__init__()
|
| 360 |
+
self.num_query_heads = num_query_heads
|
| 361 |
+
self.num_kv_heads = num_kv_heads
|
| 362 |
+
self.head_dim = head_dim
|
| 363 |
+
self.output_dim = out_embed_dim if out_embed_dim is not None else q_embed_dim
|
| 364 |
+
self.projected_query_dim = num_query_heads * head_dim
|
| 365 |
+
if num_query_heads % num_kv_heads != 0:
|
| 366 |
+
raise ValueError(f"num_query_heads ({num_query_heads}) must be divisible by num_kv_heads ({num_kv_heads})")
|
| 367 |
+
self.num_gqa_groups = num_query_heads // num_kv_heads
|
| 368 |
+
self.kv_embed_dim = kv_embed_dim
|
| 369 |
+
self.q_embed_dim = q_embed_dim
|
| 370 |
+
|
| 371 |
+
# --- Projection Layers using DenseGeneral ---
|
| 372 |
+
self.q_proj = DenseGeneral(
|
| 373 |
+
in_shapes=(q_embed_dim,),
|
| 374 |
+
out_features=(num_query_heads, head_dim),
|
| 375 |
+
axis=(-1,),
|
| 376 |
+
weight_dtype=compute_dtype,
|
| 377 |
+
)
|
| 378 |
+
self.k_proj = DenseGeneral(
|
| 379 |
+
in_shapes=(kv_embed_dim,),
|
| 380 |
+
out_features=(num_kv_heads, head_dim),
|
| 381 |
+
axis=(-1,),
|
| 382 |
+
weight_dtype=compute_dtype,
|
| 383 |
+
)
|
| 384 |
+
self.v_proj = DenseGeneral(
|
| 385 |
+
in_shapes=(kv_embed_dim,),
|
| 386 |
+
out_features=(num_kv_heads, head_dim),
|
| 387 |
+
axis=(-1,),
|
| 388 |
+
weight_dtype=compute_dtype,
|
| 389 |
+
)
|
| 390 |
+
self.o_proj = DenseGeneral(
|
| 391 |
+
in_shapes=(num_query_heads, head_dim),
|
| 392 |
+
out_features=(self.output_dim,),
|
| 393 |
+
axis=(-2, -1),
|
| 394 |
+
weight_dtype=compute_dtype,
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
# --- Rotary Embedding ---
|
| 398 |
+
self.rotary_emb = RotaryEmbedding(
|
| 399 |
+
embedding_dims=self.head_dim,
|
| 400 |
+
max_timescale=config.rope_theta,
|
| 401 |
+
dtype=compute_dtype,
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
self.is_fused_qkv = False
|
| 405 |
+
|
| 406 |
+
def get_linear_weight(self, dense: DenseGeneral):
|
| 407 |
+
W_dg = dense.weight.data
|
| 408 |
+
|
| 409 |
+
out_features = 1
|
| 410 |
+
input_features = 1
|
| 411 |
+
for dim in dense.out_features:
|
| 412 |
+
out_features *= dim
|
| 413 |
+
for dim in dense.in_shapes:
|
| 414 |
+
input_features *= dim
|
| 415 |
+
|
| 416 |
+
W_dg_reshaped_for_linear_T = W_dg.reshape(input_features, out_features)
|
| 417 |
+
linear_weight = W_dg_reshaped_for_linear_T.transpose(0, 1).contiguous()
|
| 418 |
+
return linear_weight
|
| 419 |
+
|
| 420 |
+
def patch_fused_qkv(self):
|
| 421 |
+
q_proj_weight = self.get_linear_weight(self.q_proj)
|
| 422 |
+
k_proj_weight = self.get_linear_weight(self.k_proj)
|
| 423 |
+
v_proj_weight = self.get_linear_weight(self.v_proj)
|
| 424 |
+
|
| 425 |
+
self.qkv = FusedQKV(
|
| 426 |
+
self.kv_embed_dim,
|
| 427 |
+
(self.num_query_heads * self.head_dim + 2 * (self.num_kv_heads * self.head_dim)),
|
| 428 |
+
bias=False,
|
| 429 |
+
num_q_heads=self.num_query_heads,
|
| 430 |
+
q_head_dim=self.head_dim,
|
| 431 |
+
num_kv_heads=self.num_kv_heads,
|
| 432 |
+
kv_head_dim=self.head_dim,
|
| 433 |
+
)
|
| 434 |
+
self.qkv.linear.weight.data = torch.cat([q_proj_weight, k_proj_weight, v_proj_weight], dim=0)
|
| 435 |
+
|
| 436 |
+
# print(f"qkv.weight.shape: {self.qkv.linear.weight.shape}")
|
| 437 |
+
self.is_fused_qkv = True
|
| 438 |
+
|
| 439 |
+
def forward(
|
| 440 |
+
self,
|
| 441 |
+
X: torch.Tensor, # (B, T, D) T = 1 in AR generation
|
| 442 |
+
q_positions: torch.Tensor, # (B, T)
|
| 443 |
+
kv_positions: torch.Tensor | None = None, # (B, S)
|
| 444 |
+
attn_mask: torch.Tensor | None = None, # None in Decoder Self Attention, Valid mask in Others
|
| 445 |
+
cache: KVCache | None = None, # None in Encoder, KVCache in Decoder
|
| 446 |
+
prefill: bool = False,
|
| 447 |
+
is_causal: bool = False,
|
| 448 |
+
current_idx: torch.Tensor | None = None,
|
| 449 |
+
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
|
| 450 |
+
"""
|
| 451 |
+
Performs attention calculation with optional KV caching.
|
| 452 |
+
Args:
|
| 453 |
+
Xq: Query tensor (B, T, D). T=1 during single-step decoding.
|
| 454 |
+
Xkv: Key/Value source tensor (B, S, E). S=1 during single-step decoding for self-attn.
|
| 455 |
+
q_positions: Positions for queries (B, T).
|
| 456 |
+
kv_positions: Positions for keys/values (B, S). If None, uses q_positions.
|
| 457 |
+
attn_mask: Attention mask.
|
| 458 |
+
cache: KVCache.
|
| 459 |
+
prefill: If True, use prefill mode.
|
| 460 |
+
Returns:
|
| 461 |
+
A tuple containing:
|
| 462 |
+
- output: The attention output tensor (B, T, output_dim).
|
| 463 |
+
- present_kv: The K/V state to be cached for the next step ((B, N, S_new, H), (B, N, S_new, H)). For self-attn, S_new = S_past + S. For cross-attn, S_new = S_kv.
|
| 464 |
+
"""
|
| 465 |
+
if kv_positions is None:
|
| 466 |
+
kv_positions = q_positions
|
| 467 |
+
|
| 468 |
+
original_dtype = X.dtype
|
| 469 |
+
|
| 470 |
+
if self.is_fused_qkv:
|
| 471 |
+
Xq_BxTxNxH, Xk_BxSxKxH, Xv_BxSxKxH = self.qkv(X)
|
| 472 |
+
else:
|
| 473 |
+
Xq_BxTxNxH = self.q_proj(X)
|
| 474 |
+
Xk_BxSxKxH = self.k_proj(X)
|
| 475 |
+
Xv_BxSxKxH = self.v_proj(X)
|
| 476 |
+
|
| 477 |
+
position = q_positions.unsqueeze(-1).unsqueeze(-1)
|
| 478 |
+
sinusoid_inp = position / self.rotary_emb.timescale
|
| 479 |
+
sin = torch.sin(sinusoid_inp)
|
| 480 |
+
cos = torch.cos(sinusoid_inp)
|
| 481 |
+
|
| 482 |
+
Xq_BxTxNxH = self.rotary_emb.apply_rope(Xq_BxTxNxH, sin, cos)
|
| 483 |
+
Xk_BxSxKxH = self.rotary_emb.apply_rope(Xk_BxSxKxH, sin, cos)
|
| 484 |
+
|
| 485 |
+
Xq_BxNxTxH = Xq_BxTxNxH.transpose(1, 2)
|
| 486 |
+
|
| 487 |
+
attn_k: torch.Tensor | None = cache.k if cache is not None else None
|
| 488 |
+
attn_v: torch.Tensor | None = cache.v if cache is not None else None
|
| 489 |
+
|
| 490 |
+
Xk_BxKxSxH = Xk_BxSxKxH.transpose(1, 2) # (B, K, S, H)
|
| 491 |
+
Xv_BxKxSxH = Xv_BxSxKxH.transpose(1, 2) # (B, K, S, H)
|
| 492 |
+
|
| 493 |
+
if cache is None:
|
| 494 |
+
attn_k = Xk_BxKxSxH
|
| 495 |
+
attn_v = Xv_BxKxSxH
|
| 496 |
+
elif prefill:
|
| 497 |
+
attn_k, attn_v = Xk_BxKxSxH, Xv_BxKxSxH
|
| 498 |
+
cache.prefill(attn_k, attn_v)
|
| 499 |
+
else:
|
| 500 |
+
attn_k, attn_v = cache.update(Xk_BxKxSxH, Xv_BxKxSxH, current_idx)
|
| 501 |
+
|
| 502 |
+
# Use custom attention for MPS backend, otherwise use optimized PyTorch function
|
| 503 |
+
is_mps = Xv_BxSxKxH.device.type == "mps" and torch.backends.mps.is_available()
|
| 504 |
+
if is_mps:
|
| 505 |
+
attn_output = custom_scaled_dot_product_attention(
|
| 506 |
+
query=Xq_BxNxTxH,
|
| 507 |
+
key=attn_k,
|
| 508 |
+
value=attn_v,
|
| 509 |
+
attn_mask=attn_mask if not is_causal else None,
|
| 510 |
+
scale=1.0,
|
| 511 |
+
is_causal=is_causal,
|
| 512 |
+
num_gqa_groups=self.num_gqa_groups,
|
| 513 |
+
)
|
| 514 |
+
else:
|
| 515 |
+
attn_output = F.scaled_dot_product_attention(
|
| 516 |
+
Xq_BxNxTxH,
|
| 517 |
+
attn_k,
|
| 518 |
+
attn_v,
|
| 519 |
+
attn_mask=attn_mask if not is_causal else None,
|
| 520 |
+
scale=1.0,
|
| 521 |
+
enable_gqa=self.num_gqa_groups > 1,
|
| 522 |
+
is_causal=is_causal,
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
attn_output = attn_output.transpose(1, 2).contiguous() # (B, T, N, H)
|
| 526 |
+
output = self.o_proj(attn_output)
|
| 527 |
+
|
| 528 |
+
return output.to(original_dtype)
|
| 529 |
+
|
| 530 |
+
|
| 531 |
+
class EncoderLayer(nn.Module):
|
| 532 |
+
"""Transformer Encoder Layer using DenseGeneral."""
|
| 533 |
+
|
| 534 |
+
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
|
| 535 |
+
super().__init__()
|
| 536 |
+
self.config = config
|
| 537 |
+
enc_config = config.encoder_config
|
| 538 |
+
embed_dim = enc_config.hidden_size
|
| 539 |
+
self.compute_dtype = compute_dtype
|
| 540 |
+
|
| 541 |
+
self.pre_sa_norm = RMSNorm(
|
| 542 |
+
embed_dim,
|
| 543 |
+
eps=enc_config.norm_eps,
|
| 544 |
+
dtype=torch.float32,
|
| 545 |
+
)
|
| 546 |
+
self.self_attention = SelfAttention(
|
| 547 |
+
enc_config,
|
| 548 |
+
q_embed_dim=embed_dim,
|
| 549 |
+
kv_embed_dim=embed_dim,
|
| 550 |
+
num_query_heads=enc_config.num_attention_heads,
|
| 551 |
+
num_kv_heads=enc_config.num_key_value_heads,
|
| 552 |
+
head_dim=enc_config.head_dim,
|
| 553 |
+
compute_dtype=compute_dtype,
|
| 554 |
+
out_embed_dim=embed_dim,
|
| 555 |
+
)
|
| 556 |
+
self.post_sa_norm = RMSNorm(
|
| 557 |
+
embed_dim,
|
| 558 |
+
eps=enc_config.norm_eps,
|
| 559 |
+
dtype=torch.float32,
|
| 560 |
+
)
|
| 561 |
+
self.mlp = MlpBlock(
|
| 562 |
+
embed_dim=embed_dim,
|
| 563 |
+
intermediate_dim=enc_config.intermediate_size,
|
| 564 |
+
compute_dtype=compute_dtype,
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
def forward(
|
| 568 |
+
self,
|
| 569 |
+
x: torch.Tensor,
|
| 570 |
+
state: EncoderInferenceState,
|
| 571 |
+
) -> torch.Tensor:
|
| 572 |
+
residual = x
|
| 573 |
+
x_norm = self.pre_sa_norm(x).to(self.compute_dtype)
|
| 574 |
+
|
| 575 |
+
sa_out = self.self_attention(
|
| 576 |
+
X=x_norm,
|
| 577 |
+
q_positions=state.positions,
|
| 578 |
+
kv_positions=state.positions,
|
| 579 |
+
attn_mask=state.attn_mask,
|
| 580 |
+
)
|
| 581 |
+
x = residual + sa_out
|
| 582 |
+
|
| 583 |
+
residual = x
|
| 584 |
+
x_norm = self.post_sa_norm(x).to(self.compute_dtype)
|
| 585 |
+
mlp_out = self.mlp(x_norm)
|
| 586 |
+
x = residual + mlp_out
|
| 587 |
+
|
| 588 |
+
return x
|
| 589 |
+
|
| 590 |
+
|
| 591 |
+
class Encoder(nn.Module):
|
| 592 |
+
"""Transformer Encoder Stack using DenseGeneral."""
|
| 593 |
+
|
| 594 |
+
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
|
| 595 |
+
super().__init__()
|
| 596 |
+
self.config = config
|
| 597 |
+
enc_config = config.encoder_config
|
| 598 |
+
self.compute_dtype = compute_dtype
|
| 599 |
+
|
| 600 |
+
self.embedding = nn.Embedding(
|
| 601 |
+
enc_config.vocab_size,
|
| 602 |
+
enc_config.hidden_size,
|
| 603 |
+
dtype=compute_dtype,
|
| 604 |
+
)
|
| 605 |
+
self.layers = nn.ModuleList([EncoderLayer(config, compute_dtype) for _ in range(enc_config.num_hidden_layers)])
|
| 606 |
+
self.norm = RMSNorm(
|
| 607 |
+
enc_config.hidden_size,
|
| 608 |
+
eps=enc_config.norm_eps,
|
| 609 |
+
dtype=torch.float32,
|
| 610 |
+
)
|
| 611 |
+
|
| 612 |
+
def forward(
|
| 613 |
+
self,
|
| 614 |
+
x_ids: torch.Tensor,
|
| 615 |
+
state: EncoderInferenceState,
|
| 616 |
+
) -> torch.Tensor:
|
| 617 |
+
x = self.embedding(x_ids)
|
| 618 |
+
|
| 619 |
+
for layer in self.layers:
|
| 620 |
+
x = layer(x, state)
|
| 621 |
+
|
| 622 |
+
x = self.norm(x).to(self.compute_dtype)
|
| 623 |
+
return x
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
class DecoderLayer(nn.Module):
|
| 627 |
+
"""Transformer Decoder Layer using DenseGeneral."""
|
| 628 |
+
|
| 629 |
+
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
|
| 630 |
+
super().__init__()
|
| 631 |
+
self.config = config
|
| 632 |
+
dec_config = config.decoder_config
|
| 633 |
+
enc_config = config.encoder_config
|
| 634 |
+
dec_embed_dim = dec_config.hidden_size
|
| 635 |
+
enc_embed_dim = enc_config.hidden_size
|
| 636 |
+
self.compute_dtype = compute_dtype
|
| 637 |
+
|
| 638 |
+
# Norms
|
| 639 |
+
self.pre_sa_norm = RMSNorm(
|
| 640 |
+
dec_embed_dim,
|
| 641 |
+
eps=dec_config.norm_eps,
|
| 642 |
+
dtype=torch.float32,
|
| 643 |
+
)
|
| 644 |
+
self.pre_ca_norm = RMSNorm(
|
| 645 |
+
dec_embed_dim,
|
| 646 |
+
eps=dec_config.norm_eps,
|
| 647 |
+
dtype=torch.float32,
|
| 648 |
+
)
|
| 649 |
+
self.pre_mlp_norm = RMSNorm(
|
| 650 |
+
dec_embed_dim,
|
| 651 |
+
eps=dec_config.norm_eps,
|
| 652 |
+
dtype=torch.float32,
|
| 653 |
+
)
|
| 654 |
+
|
| 655 |
+
# Self-Attention (GQA) with Causal Masking
|
| 656 |
+
self.self_attention = SelfAttention(
|
| 657 |
+
dec_config,
|
| 658 |
+
q_embed_dim=dec_embed_dim,
|
| 659 |
+
kv_embed_dim=dec_embed_dim,
|
| 660 |
+
num_query_heads=dec_config.num_attention_heads,
|
| 661 |
+
num_kv_heads=dec_config.num_key_value_heads,
|
| 662 |
+
head_dim=dec_config.head_dim,
|
| 663 |
+
compute_dtype=compute_dtype,
|
| 664 |
+
out_embed_dim=dec_embed_dim,
|
| 665 |
+
)
|
| 666 |
+
# Cross-Attention (MHA)
|
| 667 |
+
self.cross_attention = CrossAttention(
|
| 668 |
+
dec_config,
|
| 669 |
+
q_embed_dim=dec_embed_dim,
|
| 670 |
+
kv_embed_dim=enc_embed_dim, # Note kv_embed_dim
|
| 671 |
+
num_query_heads=dec_config.cross_num_attention_heads,
|
| 672 |
+
num_kv_heads=dec_config.cross_num_key_value_heads,
|
| 673 |
+
head_dim=dec_config.cross_head_dim,
|
| 674 |
+
compute_dtype=compute_dtype,
|
| 675 |
+
out_embed_dim=dec_embed_dim,
|
| 676 |
+
)
|
| 677 |
+
# MLP
|
| 678 |
+
self.mlp = MlpBlock(
|
| 679 |
+
embed_dim=dec_embed_dim,
|
| 680 |
+
intermediate_dim=dec_config.intermediate_size,
|
| 681 |
+
compute_dtype=compute_dtype,
|
| 682 |
+
)
|
| 683 |
+
|
| 684 |
+
def forward(
|
| 685 |
+
self,
|
| 686 |
+
x: torch.Tensor,
|
| 687 |
+
state: DecoderInferenceState,
|
| 688 |
+
self_attn_cache: KVCache | None = None,
|
| 689 |
+
cross_attn_cache: KVCache | None = None,
|
| 690 |
+
prefill: bool = False,
|
| 691 |
+
current_idx: int = 0,
|
| 692 |
+
) -> torch.Tensor:
|
| 693 |
+
residual = x
|
| 694 |
+
x_norm = self.pre_sa_norm(x).to(self.compute_dtype)
|
| 695 |
+
|
| 696 |
+
self_attn_mask = state.casual_attn_mask[None, None, current_idx]
|
| 697 |
+
|
| 698 |
+
sa_out = self.self_attention(
|
| 699 |
+
X=x_norm, # (2, 1, D)
|
| 700 |
+
q_positions=state.dec_positions, # (2, 1)
|
| 701 |
+
kv_positions=state.dec_positions, # (2, 1)
|
| 702 |
+
attn_mask=self_attn_mask,
|
| 703 |
+
cache=self_attn_cache,
|
| 704 |
+
prefill=prefill,
|
| 705 |
+
is_causal=prefill,
|
| 706 |
+
current_idx=current_idx,
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
x = residual + sa_out
|
| 710 |
+
|
| 711 |
+
residual = x
|
| 712 |
+
x_norm = self.pre_ca_norm(x).to(self.compute_dtype)
|
| 713 |
+
ca_out = self.cross_attention(
|
| 714 |
+
Xq=x_norm,
|
| 715 |
+
q_positions=state.dec_positions,
|
| 716 |
+
kv_positions=state.enc_positions,
|
| 717 |
+
attn_mask=state.cross_attn_mask,
|
| 718 |
+
cache=cross_attn_cache,
|
| 719 |
+
)
|
| 720 |
+
x = residual + ca_out
|
| 721 |
+
|
| 722 |
+
residual = x
|
| 723 |
+
x_norm = self.pre_mlp_norm(x).to(self.compute_dtype)
|
| 724 |
+
mlp_out = self.mlp(x_norm)
|
| 725 |
+
x = residual + mlp_out
|
| 726 |
+
|
| 727 |
+
return x
|
| 728 |
+
|
| 729 |
+
|
| 730 |
+
class Decoder(nn.Module):
|
| 731 |
+
"""Transformer Decoder Stack using DenseGeneral."""
|
| 732 |
+
|
| 733 |
+
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
|
| 734 |
+
super().__init__()
|
| 735 |
+
self.config = config
|
| 736 |
+
dec_config = config.decoder_config
|
| 737 |
+
self.num_channels = dec_config.num_channels
|
| 738 |
+
self.num_layers = dec_config.num_hidden_layers
|
| 739 |
+
|
| 740 |
+
self.embeddings = nn.ModuleList(
|
| 741 |
+
[
|
| 742 |
+
nn.Embedding(dec_config.vocab_size, dec_config.hidden_size, dtype=compute_dtype)
|
| 743 |
+
for _ in range(self.num_channels)
|
| 744 |
+
]
|
| 745 |
+
)
|
| 746 |
+
self.layers = nn.ModuleList(
|
| 747 |
+
[DecoderLayer(config=config, compute_dtype=compute_dtype) for _ in range(self.num_layers)]
|
| 748 |
+
)
|
| 749 |
+
|
| 750 |
+
self.norm = RMSNorm(
|
| 751 |
+
dec_config.hidden_size,
|
| 752 |
+
eps=dec_config.norm_eps,
|
| 753 |
+
dtype=torch.float32,
|
| 754 |
+
)
|
| 755 |
+
|
| 756 |
+
self.logits_dense = DenseGeneral(
|
| 757 |
+
in_shapes=(dec_config.hidden_size,),
|
| 758 |
+
out_features=(self.num_channels, dec_config.vocab_size),
|
| 759 |
+
axis=(-1,),
|
| 760 |
+
weight_dtype=compute_dtype,
|
| 761 |
+
)
|
| 762 |
+
|
| 763 |
+
def precompute_cross_attn_cache(
|
| 764 |
+
self,
|
| 765 |
+
enc_out: torch.Tensor, # (B, S, E)
|
| 766 |
+
) -> list[KVCache]:
|
| 767 |
+
"""
|
| 768 |
+
Computes the Key and Value tensors for cross-attention for each layer from the encoder output.
|
| 769 |
+
"""
|
| 770 |
+
per_layer_kv_cache: list[KVCache] = []
|
| 771 |
+
|
| 772 |
+
for layer in self.layers:
|
| 773 |
+
cross_attn_module = layer.cross_attention
|
| 774 |
+
k_proj = cross_attn_module.k_proj(enc_out)
|
| 775 |
+
v_proj = cross_attn_module.v_proj(enc_out)
|
| 776 |
+
|
| 777 |
+
k = k_proj.transpose(1, 2)
|
| 778 |
+
v = v_proj.transpose(1, 2)
|
| 779 |
+
|
| 780 |
+
per_layer_kv_cache.append(KVCache.from_kv(k, v))
|
| 781 |
+
|
| 782 |
+
return per_layer_kv_cache
|
| 783 |
+
|
| 784 |
+
def decode_step(
|
| 785 |
+
self,
|
| 786 |
+
tgt_ids_Bx1xC: torch.Tensor, # [B, 1, C]
|
| 787 |
+
state: DecoderInferenceState,
|
| 788 |
+
current_idx: int,
|
| 789 |
+
) -> torch.Tensor:
|
| 790 |
+
"""
|
| 791 |
+
Performs a single decoding step, managing KV caches layer by layer.
|
| 792 |
+
Returns:
|
| 793 |
+
A tuple containing:
|
| 794 |
+
- logits_Bx1xCV: The final output logits for the current step (B, 1, C*V), cast to float32.
|
| 795 |
+
"""
|
| 796 |
+
|
| 797 |
+
x = None
|
| 798 |
+
for i in range(self.num_channels):
|
| 799 |
+
channel_tokens = tgt_ids_Bx1xC[..., i]
|
| 800 |
+
channel_embed = self.embeddings[i](channel_tokens)
|
| 801 |
+
x = channel_embed if x is None else x + channel_embed
|
| 802 |
+
|
| 803 |
+
for i, layer in enumerate(self.layers):
|
| 804 |
+
self_cache = state.self_attn_cache[i]
|
| 805 |
+
cross_cache = state.cross_attn_cache[i]
|
| 806 |
+
x = layer(
|
| 807 |
+
x, # (2, 1, D)
|
| 808 |
+
state,
|
| 809 |
+
self_attn_cache=self_cache,
|
| 810 |
+
cross_attn_cache=cross_cache,
|
| 811 |
+
current_idx=current_idx,
|
| 812 |
+
)
|
| 813 |
+
|
| 814 |
+
x = self.norm(x)
|
| 815 |
+
logits_Bx1xCxV = self.logits_dense(x)
|
| 816 |
+
|
| 817 |
+
return logits_Bx1xCxV.to(torch.float32)
|
| 818 |
+
|
| 819 |
+
def forward(self, tgt_ids_BxTxC: torch.Tensor, state: DecoderInferenceState) -> torch.Tensor:
|
| 820 |
+
"""
|
| 821 |
+
Forward pass for the Decoder stack, managing KV caches.
|
| 822 |
+
Args:
|
| 823 |
+
tgt_ids_BxTxC: Target token IDs (B, T, C).
|
| 824 |
+
encoder_out: Output from the encoder (B, S, E).
|
| 825 |
+
tgt_positions: Positions for target sequence (B, T).
|
| 826 |
+
src_positions: Positions for source sequence (B, S).
|
| 827 |
+
self_attn_mask: Mask for self-attention.
|
| 828 |
+
cross_attn_mask: Mask for cross-attention.
|
| 829 |
+
past_key_values: List containing the self-attention KV cache for each layer
|
| 830 |
+
from the previous decoding step. `len(past_key_values)` should
|
| 831 |
+
equal `num_layers`.
|
| 832 |
+
precomputed_cross_attn_kv: A single tuple containing the pre-computed K/V cache
|
| 833 |
+
derived from `encoder_out`. This is passed identically
|
| 834 |
+
to all layers.
|
| 835 |
+
Returns:
|
| 836 |
+
A tuple containing:
|
| 837 |
+
- logits: The final output logits (B, T, C * V), cast to float32.
|
| 838 |
+
- present_key_values: A list containing the updated self-attention KV cache
|
| 839 |
+
for each layer for the *current* decoding step.
|
| 840 |
+
"""
|
| 841 |
+
_, _, num_channels_in = tgt_ids_BxTxC.shape
|
| 842 |
+
assert num_channels_in == self.num_channels, "Input channels mismatch"
|
| 843 |
+
|
| 844 |
+
# Embeddings
|
| 845 |
+
x = None
|
| 846 |
+
for i in range(self.num_channels):
|
| 847 |
+
channel_tokens = tgt_ids_BxTxC[..., i]
|
| 848 |
+
channel_embed = self.embeddings[i](channel_tokens)
|
| 849 |
+
x = channel_embed if x is None else x + channel_embed
|
| 850 |
+
|
| 851 |
+
for i, layer in enumerate(self.layers):
|
| 852 |
+
self_cache = state.self_attn_cache[i]
|
| 853 |
+
cross_cache = state.cross_attn_cache[i]
|
| 854 |
+
x = layer(
|
| 855 |
+
x,
|
| 856 |
+
state,
|
| 857 |
+
self_attn_cache=self_cache,
|
| 858 |
+
cross_attn_cache=cross_cache,
|
| 859 |
+
prefill=True,
|
| 860 |
+
)
|
| 861 |
+
|
| 862 |
+
# Final Norm
|
| 863 |
+
x = self.norm(x)
|
| 864 |
+
logits_BxTxCxV = self.logits_dense(x)
|
| 865 |
+
|
| 866 |
+
return logits_BxTxCxV.to(torch.float32)
|
| 867 |
+
|
| 868 |
+
|
| 869 |
+
class DiaModel(
|
| 870 |
+
nn.Module,
|
| 871 |
+
PyTorchModelHubMixin,
|
| 872 |
+
repo_url="https://github.com/nari-labs/dia",
|
| 873 |
+
pipeline_tag="text-to-speech",
|
| 874 |
+
license="apache-2.0",
|
| 875 |
+
coders={
|
| 876 |
+
DiaConfig: (
|
| 877 |
+
lambda x: x.model_dump(),
|
| 878 |
+
lambda data: DiaConfig.model_validate(data),
|
| 879 |
+
),
|
| 880 |
+
},
|
| 881 |
+
):
|
| 882 |
+
"""PyTorch Dia Model using DenseGeneral."""
|
| 883 |
+
|
| 884 |
+
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
|
| 885 |
+
super().__init__()
|
| 886 |
+
self.config = config
|
| 887 |
+
self.encoder = Encoder(config, compute_dtype)
|
| 888 |
+
self.decoder = Decoder(config, compute_dtype)
|
dia/model.py
ADDED
|
@@ -0,0 +1,802 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
from enum import Enum
|
| 3 |
+
from typing import Callable
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import torchaudio
|
| 9 |
+
|
| 10 |
+
from .audio import apply_audio_delay, build_delay_indices, build_revert_indices, revert_audio_delay
|
| 11 |
+
from .config import DiaConfig
|
| 12 |
+
from .layers import DiaModel
|
| 13 |
+
from .state import DecoderInferenceState, DecoderOutput, EncoderInferenceState
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
DEFAULT_SAMPLE_RATE = 44100
|
| 17 |
+
SAMPLE_RATE_RATIO = 512
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def _get_default_device():
|
| 21 |
+
if torch.cuda.is_available():
|
| 22 |
+
return torch.device("cuda")
|
| 23 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
| 24 |
+
return torch.device("mps")
|
| 25 |
+
return torch.device("cpu")
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def _sample_next_token(
|
| 29 |
+
logits_BCxV: torch.Tensor,
|
| 30 |
+
temperature: float,
|
| 31 |
+
top_p: float,
|
| 32 |
+
top_k: int | None,
|
| 33 |
+
audio_eos_value: int,
|
| 34 |
+
) -> torch.Tensor:
|
| 35 |
+
if temperature == 0.0:
|
| 36 |
+
return torch.argmax(logits_BCxV, dim=-1)
|
| 37 |
+
|
| 38 |
+
logits_BCxV = logits_BCxV / temperature
|
| 39 |
+
|
| 40 |
+
if audio_eos_value is not None and audio_eos_value >= 0:
|
| 41 |
+
top_logit_indices_BC = torch.argmax(logits_BCxV, dim=-1)
|
| 42 |
+
eos_not_highest_mask_BC = top_logit_indices_BC != audio_eos_value
|
| 43 |
+
mask_eos_unless_highest_BCxV = torch.zeros_like(logits_BCxV, dtype=torch.bool)
|
| 44 |
+
mask_eos_unless_highest_BCxV[eos_not_highest_mask_BC, audio_eos_value] = True
|
| 45 |
+
logits_BCxV = logits_BCxV.masked_fill(mask_eos_unless_highest_BCxV, -torch.inf)
|
| 46 |
+
eos_highest_mask_BC = top_logit_indices_BC == audio_eos_value
|
| 47 |
+
mask_eos_highest_BCxV = torch.zeros_like(logits_BCxV, dtype=torch.bool)
|
| 48 |
+
mask_eos_highest_BCxV[eos_highest_mask_BC, :audio_eos_value] = True
|
| 49 |
+
logits_BCxV = logits_BCxV.masked_fill(mask_eos_highest_BCxV, -torch.inf)
|
| 50 |
+
|
| 51 |
+
if top_k is not None:
|
| 52 |
+
_, top_k_indices_BCxV = torch.topk(logits_BCxV, k=top_k, dim=-1)
|
| 53 |
+
mask = torch.ones_like(logits_BCxV, dtype=torch.bool)
|
| 54 |
+
mask = mask.scatter(dim=-1, index=top_k_indices_BCxV, value=False)
|
| 55 |
+
logits_BCxV = logits_BCxV.masked_fill(mask, -torch.inf)
|
| 56 |
+
|
| 57 |
+
if top_p < 1.0:
|
| 58 |
+
probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
|
| 59 |
+
sorted_probs_BCxV, sorted_indices_BCxV = torch.sort(probs_BCxV, dim=-1, descending=True)
|
| 60 |
+
cumulative_probs_BCxV = torch.cumsum(sorted_probs_BCxV, dim=-1)
|
| 61 |
+
|
| 62 |
+
sorted_indices_to_remove_BCxV = cumulative_probs_BCxV > top_p
|
| 63 |
+
sorted_indices_to_remove_BCxV = torch.roll(sorted_indices_to_remove_BCxV, shifts=1, dims=-1)
|
| 64 |
+
sorted_indices_to_remove_BCxV[..., 0] = torch.zeros_like(sorted_indices_to_remove_BCxV[..., 0])
|
| 65 |
+
|
| 66 |
+
indices_to_remove_BCxV = torch.zeros_like(sorted_indices_to_remove_BCxV)
|
| 67 |
+
indices_to_remove_BCxV = indices_to_remove_BCxV.scatter(
|
| 68 |
+
dim=-1, index=sorted_indices_BCxV, src=sorted_indices_to_remove_BCxV
|
| 69 |
+
)
|
| 70 |
+
logits_BCxV = logits_BCxV.masked_fill(indices_to_remove_BCxV, -torch.inf)
|
| 71 |
+
|
| 72 |
+
final_probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
|
| 73 |
+
|
| 74 |
+
sampled_indices_BC = torch.multinomial(final_probs_BCxV, num_samples=1)
|
| 75 |
+
sampled_indices_C = sampled_indices_BC.squeeze(-1)
|
| 76 |
+
return sampled_indices_C
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class ComputeDtype(str, Enum):
|
| 80 |
+
FLOAT32 = "float32"
|
| 81 |
+
FLOAT16 = "float16"
|
| 82 |
+
BFLOAT16 = "bfloat16"
|
| 83 |
+
|
| 84 |
+
def to_dtype(self) -> torch.dtype:
|
| 85 |
+
if self == ComputeDtype.FLOAT32:
|
| 86 |
+
return torch.float32
|
| 87 |
+
elif self == ComputeDtype.FLOAT16:
|
| 88 |
+
return torch.float16
|
| 89 |
+
elif self == ComputeDtype.BFLOAT16:
|
| 90 |
+
return torch.bfloat16
|
| 91 |
+
else:
|
| 92 |
+
raise ValueError(f"Unsupported compute dtype: {self}")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class Dia:
|
| 96 |
+
def __init__(
|
| 97 |
+
self,
|
| 98 |
+
config: DiaConfig,
|
| 99 |
+
compute_dtype: str | ComputeDtype = ComputeDtype.FLOAT32,
|
| 100 |
+
device: torch.device | None = None,
|
| 101 |
+
load_dac: bool = True,
|
| 102 |
+
):
|
| 103 |
+
"""Initializes the Dia model.
|
| 104 |
+
|
| 105 |
+
Args:
|
| 106 |
+
config: The configuration object for the model.
|
| 107 |
+
compute_dtype: The computation dtype to use.
|
| 108 |
+
device: The device to load the model onto. If None, will automatically select the best available device.
|
| 109 |
+
load_dac: Whether to load the DAC model.
|
| 110 |
+
|
| 111 |
+
Raises:
|
| 112 |
+
RuntimeError: If there is an error loading the DAC model.
|
| 113 |
+
"""
|
| 114 |
+
super().__init__()
|
| 115 |
+
self.config = config
|
| 116 |
+
self.device = device if device is not None else _get_default_device()
|
| 117 |
+
if isinstance(compute_dtype, str):
|
| 118 |
+
compute_dtype = ComputeDtype(compute_dtype)
|
| 119 |
+
self.compute_dtype = compute_dtype.to_dtype()
|
| 120 |
+
self.model: DiaModel = DiaModel(config, self.compute_dtype)
|
| 121 |
+
self.dac_model = None
|
| 122 |
+
self._compiled_step = None
|
| 123 |
+
self.load_dac = load_dac
|
| 124 |
+
|
| 125 |
+
if not self.load_dac:
|
| 126 |
+
print("Warning: DAC model will not be loaded. This is not recommended.")
|
| 127 |
+
|
| 128 |
+
if torch.cuda.is_available():
|
| 129 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 130 |
+
|
| 131 |
+
@classmethod
|
| 132 |
+
def from_local(
|
| 133 |
+
cls,
|
| 134 |
+
config_path: str,
|
| 135 |
+
checkpoint_path: str,
|
| 136 |
+
compute_dtype: str | ComputeDtype = ComputeDtype.FLOAT32,
|
| 137 |
+
device: torch.device | None = None,
|
| 138 |
+
load_dac: bool = True,
|
| 139 |
+
) -> "Dia":
|
| 140 |
+
"""Loads the Dia model from local configuration and checkpoint files.
|
| 141 |
+
|
| 142 |
+
Args:
|
| 143 |
+
config_path: Path to the configuration JSON file.
|
| 144 |
+
checkpoint_path: Path to the model checkpoint (.pth) file.
|
| 145 |
+
compute_dtype: The computation dtype to use.
|
| 146 |
+
device: The device to load the model onto. If None, will automatically select the best available device.
|
| 147 |
+
load_dac: Whether to load the DAC model.
|
| 148 |
+
|
| 149 |
+
Returns:
|
| 150 |
+
An instance of the Dia model loaded with weights and set to eval mode.
|
| 151 |
+
|
| 152 |
+
Raises:
|
| 153 |
+
FileNotFoundError: If the config or checkpoint file is not found.
|
| 154 |
+
RuntimeError: If there is an error loading the checkpoint.
|
| 155 |
+
"""
|
| 156 |
+
config = DiaConfig.load(config_path)
|
| 157 |
+
if config is None:
|
| 158 |
+
raise FileNotFoundError(f"Config file not found at {config_path}")
|
| 159 |
+
|
| 160 |
+
dia = cls(config, compute_dtype, device, load_dac)
|
| 161 |
+
|
| 162 |
+
try:
|
| 163 |
+
state_dict = torch.load(checkpoint_path, map_location=dia.device)
|
| 164 |
+
dia.model.load_state_dict(state_dict)
|
| 165 |
+
except FileNotFoundError:
|
| 166 |
+
raise FileNotFoundError(f"Checkpoint file not found at {checkpoint_path}")
|
| 167 |
+
except Exception as e:
|
| 168 |
+
raise RuntimeError(f"Error loading checkpoint from {checkpoint_path}") from e
|
| 169 |
+
|
| 170 |
+
dia.model.to(dia.device)
|
| 171 |
+
dia.model.eval()
|
| 172 |
+
if load_dac:
|
| 173 |
+
dia._load_dac_model()
|
| 174 |
+
return dia
|
| 175 |
+
|
| 176 |
+
@classmethod
|
| 177 |
+
def from_pretrained(
|
| 178 |
+
cls,
|
| 179 |
+
model_name: str = "nari-labs/Dia-1.6B-0626",
|
| 180 |
+
compute_dtype: str | ComputeDtype = ComputeDtype.FLOAT32,
|
| 181 |
+
device: torch.device | None = None,
|
| 182 |
+
load_dac: bool = True,
|
| 183 |
+
) -> "Dia":
|
| 184 |
+
"""Loads the Dia model from a Hugging Face Hub repository.
|
| 185 |
+
|
| 186 |
+
Downloads the configuration and checkpoint files from the specified
|
| 187 |
+
repository ID and then loads the model.
|
| 188 |
+
|
| 189 |
+
Args:
|
| 190 |
+
model_name: The Hugging Face Hub repository ID (e.g., "nari-labs/Dia-1.6B-0626").
|
| 191 |
+
compute_dtype: The computation dtype to use.
|
| 192 |
+
device: The device to load the model onto. If None, will automatically select the best available device.
|
| 193 |
+
load_dac: Whether to load the DAC model.
|
| 194 |
+
|
| 195 |
+
Returns:
|
| 196 |
+
An instance of the Dia model loaded with weights and set to eval mode.
|
| 197 |
+
|
| 198 |
+
Raises:
|
| 199 |
+
FileNotFoundError: If config or checkpoint download/loading fails.
|
| 200 |
+
RuntimeError: If there is an error loading the checkpoint.
|
| 201 |
+
"""
|
| 202 |
+
if isinstance(compute_dtype, str):
|
| 203 |
+
compute_dtype = ComputeDtype(compute_dtype)
|
| 204 |
+
|
| 205 |
+
# Load model directly using DiaModel's from_pretrained which handles HF download
|
| 206 |
+
try:
|
| 207 |
+
loaded_model = DiaModel.from_pretrained(model_name, compute_dtype=compute_dtype.to_dtype())
|
| 208 |
+
except Exception as e:
|
| 209 |
+
raise RuntimeError(f"Error loading model from Hugging Face Hub ({model_name})") from e
|
| 210 |
+
|
| 211 |
+
config = loaded_model.config # Get config from the loaded model
|
| 212 |
+
dia = cls(config, compute_dtype, device, load_dac)
|
| 213 |
+
|
| 214 |
+
dia.model = loaded_model # Assign the already loaded model
|
| 215 |
+
dia.model.to(dia.device)
|
| 216 |
+
dia.model.eval()
|
| 217 |
+
if load_dac:
|
| 218 |
+
dia._load_dac_model()
|
| 219 |
+
return dia
|
| 220 |
+
|
| 221 |
+
def _load_dac_model(self):
|
| 222 |
+
"""Loads the Descript Audio Codec (DAC) model.
|
| 223 |
+
|
| 224 |
+
Downloads the DAC model if necessary and loads it onto the specified device.
|
| 225 |
+
Sets the DAC model to evaluation mode.
|
| 226 |
+
|
| 227 |
+
Raises:
|
| 228 |
+
RuntimeError: If downloading or loading the DAC model fails.
|
| 229 |
+
"""
|
| 230 |
+
import dac
|
| 231 |
+
|
| 232 |
+
try:
|
| 233 |
+
dac_model_path = dac.utils.download()
|
| 234 |
+
dac_model = dac.DAC.load(dac_model_path).to(self.device)
|
| 235 |
+
dac_model.eval() # Ensure DAC is in eval mode
|
| 236 |
+
except Exception as e:
|
| 237 |
+
raise RuntimeError("Failed to load DAC model") from e
|
| 238 |
+
self.dac_model = dac_model
|
| 239 |
+
|
| 240 |
+
def _encode_text(self, text: str) -> torch.Tensor:
|
| 241 |
+
"""Encodes the input text string into a tensor of token IDs using byte-level encoding.
|
| 242 |
+
|
| 243 |
+
Special tokens [S1] and [S2] are replaced by their byte values. The resulting
|
| 244 |
+
sequence is truncated to the maximum configured text length.
|
| 245 |
+
|
| 246 |
+
Args:
|
| 247 |
+
text: The input text string.
|
| 248 |
+
|
| 249 |
+
Returns:
|
| 250 |
+
A tensor containing the encoded byte token IDs.
|
| 251 |
+
"""
|
| 252 |
+
max_len = self.config.encoder_config.max_position_embeddings
|
| 253 |
+
|
| 254 |
+
byte_text = text.encode("utf-8")
|
| 255 |
+
# Replace special tokens with their byte values if needed by the specific tokenizer/config
|
| 256 |
+
# Assuming byte values 1 and 2 are correct placeholders based on original code
|
| 257 |
+
replaced_bytes = byte_text.replace(b"[S1]", b"\x01").replace(b"[S2]", b"\x02")
|
| 258 |
+
text_tokens = list(replaced_bytes)
|
| 259 |
+
return torch.tensor(
|
| 260 |
+
text_tokens[:max_len],
|
| 261 |
+
dtype=torch.long,
|
| 262 |
+
device=self.device,
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
def _pad_text_input(self, text_tokens: list[torch.Tensor]) -> torch.Tensor:
|
| 266 |
+
"""Pads the text input to the maximum length."""
|
| 267 |
+
text_pad_value = 0
|
| 268 |
+
max_len = self.config.encoder_config.max_position_embeddings
|
| 269 |
+
batch_size = len(text_tokens)
|
| 270 |
+
|
| 271 |
+
src_tokens = torch.full(
|
| 272 |
+
(batch_size, 1, max_len),
|
| 273 |
+
fill_value=text_pad_value,
|
| 274 |
+
dtype=torch.long,
|
| 275 |
+
device=self.device,
|
| 276 |
+
)
|
| 277 |
+
for i in range(batch_size):
|
| 278 |
+
current_len = len(text_tokens[i])
|
| 279 |
+
src_tokens[i, 0, :current_len] = text_tokens[i]
|
| 280 |
+
return src_tokens
|
| 281 |
+
|
| 282 |
+
def _prepare_audio_prompt(self, audio_prompts: list[torch.Tensor | None]) -> tuple[torch.Tensor, list[int]]:
|
| 283 |
+
"""Prepares the audio prompt tensor for the decoder.
|
| 284 |
+
|
| 285 |
+
Handles padding, adds the beginning-of-sequence (BOS) token, applies the
|
| 286 |
+
delay pattern, and determines the number of prefill steps for each item
|
| 287 |
+
in the batch.
|
| 288 |
+
|
| 289 |
+
Args:
|
| 290 |
+
audio_prompts: A list of audio prompt tensors (encoded DAC frames) or None.
|
| 291 |
+
Each tensor should have shape [T, C].
|
| 292 |
+
|
| 293 |
+
Returns:
|
| 294 |
+
A tuple containing:
|
| 295 |
+
- delayed_batch (torch.Tensor): The prepared audio prompt tensor with
|
| 296 |
+
delays applied, shape [B, T_max_padded, C].
|
| 297 |
+
- prefill_steps (list[int]): A list containing the number of valid
|
| 298 |
+
tokens (including BOS) for each prompt in the batch.
|
| 299 |
+
"""
|
| 300 |
+
num_channels = self.config.decoder_config.num_channels
|
| 301 |
+
audio_bos_value = self.config.bos_token_id
|
| 302 |
+
delay_pattern = self.config.delay_pattern
|
| 303 |
+
max_delay_pattern = max(delay_pattern)
|
| 304 |
+
batch_size = len(audio_prompts)
|
| 305 |
+
|
| 306 |
+
max_len = max(p.shape[0] if p is not None else 0 for p in audio_prompts) + max_delay_pattern
|
| 307 |
+
prefill_steps = []
|
| 308 |
+
|
| 309 |
+
prefill = torch.full(
|
| 310 |
+
(batch_size, max_len, num_channels),
|
| 311 |
+
fill_value=-1,
|
| 312 |
+
dtype=torch.int,
|
| 313 |
+
device=self.device,
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
prefill[:, 0, :] = audio_bos_value
|
| 317 |
+
|
| 318 |
+
for i in range(batch_size):
|
| 319 |
+
prompt = audio_prompts[i]
|
| 320 |
+
if prompt is not None:
|
| 321 |
+
prompt = prompt.to(device=self.device, dtype=torch.int)
|
| 322 |
+
prefill[i, 1 : prompt.shape[0] + 1, :] = prompt
|
| 323 |
+
prefill_steps.append(prompt.shape[0] + 1)
|
| 324 |
+
else:
|
| 325 |
+
prefill_steps.append(1)
|
| 326 |
+
|
| 327 |
+
delay_precomp = build_delay_indices(
|
| 328 |
+
B=batch_size,
|
| 329 |
+
T=max_len,
|
| 330 |
+
C=num_channels,
|
| 331 |
+
delay_pattern=delay_pattern,
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
delayed_batch = apply_audio_delay(
|
| 335 |
+
audio_BxTxC=prefill,
|
| 336 |
+
pad_value=-1,
|
| 337 |
+
bos_value=audio_bos_value,
|
| 338 |
+
precomp=delay_precomp,
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
return delayed_batch, prefill_steps
|
| 342 |
+
|
| 343 |
+
def _prepare_generation(
|
| 344 |
+
self,
|
| 345 |
+
text: torch.Tensor,
|
| 346 |
+
audio_prompts: list[torch.Tensor | None],
|
| 347 |
+
max_tokens: int | None = None,
|
| 348 |
+
attn_fn: Callable = F.scaled_dot_product_attention,
|
| 349 |
+
):
|
| 350 |
+
"""Initializes the model state for generation.
|
| 351 |
+
|
| 352 |
+
Encodes the text input (conditional and unconditional), prepares the
|
| 353 |
+
encoder and decoder states (including KV caches and cross-attention),
|
| 354 |
+
prepares the audio prompt, and performs the initial decoder prefill steps
|
| 355 |
+
based on the audio prompts.
|
| 356 |
+
|
| 357 |
+
Args:
|
| 358 |
+
text: The padded text input tensor, shape [B, 1, T_text].
|
| 359 |
+
audio_prompts: A list of prepared audio prompt tensors or None.
|
| 360 |
+
|
| 361 |
+
Returns:
|
| 362 |
+
A tuple containing:
|
| 363 |
+
- dec_state (DecoderInferenceState): The initialized decoder state.
|
| 364 |
+
- dec_output (DecoderOutput): The initialized decoder output manager,
|
| 365 |
+
containing the prefilled audio tokens.
|
| 366 |
+
"""
|
| 367 |
+
batch_size = text.shape[0]
|
| 368 |
+
|
| 369 |
+
enc_input_uncond = torch.zeros_like(text)
|
| 370 |
+
enc_input_cond = text
|
| 371 |
+
stacked_inputs = torch.stack([enc_input_uncond, enc_input_cond], dim=1)
|
| 372 |
+
enc_input = stacked_inputs.view(2 * batch_size, -1)
|
| 373 |
+
|
| 374 |
+
enc_state = EncoderInferenceState.new(self.config, enc_input_cond)
|
| 375 |
+
encoder_out = self.model.encoder(enc_input, enc_state)
|
| 376 |
+
|
| 377 |
+
dec_cross_attn_cache = self.model.decoder.precompute_cross_attn_cache(encoder_out)
|
| 378 |
+
dec_state = DecoderInferenceState.new(
|
| 379 |
+
self.config,
|
| 380 |
+
enc_state,
|
| 381 |
+
encoder_out,
|
| 382 |
+
dec_cross_attn_cache,
|
| 383 |
+
self.compute_dtype,
|
| 384 |
+
max_generation_length=max_tokens,
|
| 385 |
+
)
|
| 386 |
+
prefill, prefill_steps = self._prepare_audio_prompt(audio_prompts)
|
| 387 |
+
|
| 388 |
+
dec_output = DecoderOutput.new(batch_size, self.config, self.device)
|
| 389 |
+
dec_output.prefill(prefill, prefill_steps)
|
| 390 |
+
|
| 391 |
+
dec_step = min(prefill_steps) - 1
|
| 392 |
+
if dec_step > 0:
|
| 393 |
+
dec_state.prepare_step(0, dec_step)
|
| 394 |
+
tokens_BxTxC = dec_output.get_tokens_at(0, dec_step).repeat_interleave(2, dim=0)
|
| 395 |
+
self.model.decoder.forward(tokens_BxTxC, dec_state)
|
| 396 |
+
|
| 397 |
+
return dec_state, dec_output
|
| 398 |
+
|
| 399 |
+
def _decoder_step(
|
| 400 |
+
self,
|
| 401 |
+
tokens_Bx1xC: torch.Tensor,
|
| 402 |
+
dec_state: DecoderInferenceState,
|
| 403 |
+
cfg_scale: float,
|
| 404 |
+
temperature: float,
|
| 405 |
+
top_p: float,
|
| 406 |
+
top_k: int,
|
| 407 |
+
current_idx: int,
|
| 408 |
+
) -> torch.Tensor:
|
| 409 |
+
"""Performs a single step of the decoder inference.
|
| 410 |
+
|
| 411 |
+
Takes the tokens from the previous step, runs them through the decoder
|
| 412 |
+
(for both conditional and unconditional paths), applies classifier-free
|
| 413 |
+
guidance (CFG), samples the next token using temperature, top-p, and top-k
|
| 414 |
+
sampling, and applies constraints (e.g., preventing EOS in certain channels).
|
| 415 |
+
|
| 416 |
+
Args:
|
| 417 |
+
tokens_Bx1xC: The input tokens for the current step, shape [2*B, 1, C].
|
| 418 |
+
Repeated for CFG (unconditional and conditional).
|
| 419 |
+
dec_state: The current state of the decoder (KV caches, etc.).
|
| 420 |
+
cfg_scale: The scale factor for classifier-free guidance.
|
| 421 |
+
temperature: The temperature for sampling.
|
| 422 |
+
top_p: The cumulative probability threshold for top-p sampling.
|
| 423 |
+
top_k: The number of top logits to consider for top-k sampling.
|
| 424 |
+
current_idx: The current generation step index.
|
| 425 |
+
|
| 426 |
+
Returns:
|
| 427 |
+
torch.Tensor: The sampled next tokens for each item in the batch,
|
| 428 |
+
shape [B, C].
|
| 429 |
+
"""
|
| 430 |
+
B = tokens_Bx1xC.shape[0] // 2
|
| 431 |
+
|
| 432 |
+
audio_eos_value = self.config.eos_token_id
|
| 433 |
+
logits_Bx1xCxV = self.model.decoder.decode_step(tokens_Bx1xC, dec_state, current_idx)
|
| 434 |
+
|
| 435 |
+
logits_last_2BxCxV = logits_Bx1xCxV[:, -1]
|
| 436 |
+
logits_last_Bx2xCxV = logits_last_2BxCxV.view(B, 2, *logits_last_2BxCxV.shape[1:])
|
| 437 |
+
|
| 438 |
+
uncond_logits_BxCxV = logits_last_Bx2xCxV[:, 0, :, :] # Shape [B, C, V]
|
| 439 |
+
cond_logits_BxCxV = logits_last_Bx2xCxV[:, 1, :, :] # Shape [B, C, V]
|
| 440 |
+
logits_BxCxV = cond_logits_BxCxV + cfg_scale * (cond_logits_BxCxV - uncond_logits_BxCxV)
|
| 441 |
+
|
| 442 |
+
_, top_k_indices_BxCxk = torch.topk(logits_BxCxV, k=top_k, dim=-1)
|
| 443 |
+
mask_BxCxV = torch.ones_like(logits_BxCxV, dtype=torch.bool)
|
| 444 |
+
mask_BxCxV = mask_BxCxV.scatter(dim=-1, index=top_k_indices_BxCxk, value=False)
|
| 445 |
+
logits_BxCxV = cond_logits_BxCxV.masked_fill(mask_BxCxV, -torch.inf)
|
| 446 |
+
|
| 447 |
+
logits_BxCxV[:, :, audio_eos_value + 1 :] = torch.full_like(
|
| 448 |
+
logits_BxCxV[:, :, audio_eos_value + 1 :],
|
| 449 |
+
fill_value=-torch.inf,
|
| 450 |
+
)
|
| 451 |
+
logits_BxCxV[:, 1:, audio_eos_value:] = torch.full_like(
|
| 452 |
+
logits_BxCxV[:, 1:, audio_eos_value:],
|
| 453 |
+
fill_value=-torch.inf,
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
flat_logits_BCxV = logits_BxCxV.view(B * self.config.decoder_config.num_channels, -1)
|
| 457 |
+
|
| 458 |
+
pred_BC = _sample_next_token(
|
| 459 |
+
flat_logits_BCxV.float(),
|
| 460 |
+
temperature=temperature,
|
| 461 |
+
top_p=top_p,
|
| 462 |
+
top_k=top_k,
|
| 463 |
+
audio_eos_value=audio_eos_value,
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
pred_BxC = pred_BC.view(B, self.config.decoder_config.num_channels)
|
| 467 |
+
return pred_BxC
|
| 468 |
+
|
| 469 |
+
def _generate_output(self, generated_codes: torch.Tensor, lengths_Bx: torch.Tensor) -> list[np.ndarray]:
|
| 470 |
+
"""Converts generated delayed codes into audio waveforms.
|
| 471 |
+
|
| 472 |
+
Reverts the delay pattern applied during generation, decodes the resulting
|
| 473 |
+
codebook using the DAC model (if loaded), and returns a list of audio
|
| 474 |
+
waveforms as NumPy arrays. If DAC is not loaded, returns the raw codebook indices.
|
| 475 |
+
|
| 476 |
+
Args:
|
| 477 |
+
generated_codes: The tensor of generated audio codes with delays,
|
| 478 |
+
shape [B, T_gen, C].
|
| 479 |
+
lengths_Bx: A tensor containing the valid length of generated codes
|
| 480 |
+
(excluding padding and BOS/EOS markers) for each item
|
| 481 |
+
in the batch, shape [B].
|
| 482 |
+
|
| 483 |
+
Returns:
|
| 484 |
+
A list of NumPy arrays, where each array represents the generated audio
|
| 485 |
+
waveform for one item in the batch. If DAC is not loaded, returns the
|
| 486 |
+
raw, reverted codebook indices as NumPy arrays.
|
| 487 |
+
"""
|
| 488 |
+
num_channels = self.config.decoder_config.num_channels
|
| 489 |
+
batch_size = generated_codes.shape[0]
|
| 490 |
+
seq_length = generated_codes.shape[1]
|
| 491 |
+
delay_pattern = self.config.delay_pattern
|
| 492 |
+
audio_pad_value = self.config.pad_token_id
|
| 493 |
+
max_delay_pattern = max(delay_pattern)
|
| 494 |
+
|
| 495 |
+
revert_precomp = build_revert_indices(
|
| 496 |
+
B=batch_size,
|
| 497 |
+
T=seq_length,
|
| 498 |
+
C=num_channels,
|
| 499 |
+
delay_pattern=delay_pattern,
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
codebook = revert_audio_delay(
|
| 503 |
+
audio_BxTxC=generated_codes,
|
| 504 |
+
pad_value=audio_pad_value,
|
| 505 |
+
precomp=revert_precomp,
|
| 506 |
+
T=seq_length,
|
| 507 |
+
)[:, :-max_delay_pattern, :]
|
| 508 |
+
|
| 509 |
+
min_valid_index = 0
|
| 510 |
+
max_valid_index = 1023
|
| 511 |
+
invalid_mask = (codebook < min_valid_index) | (codebook > max_valid_index)
|
| 512 |
+
codebook[invalid_mask] = 0
|
| 513 |
+
|
| 514 |
+
audios = []
|
| 515 |
+
|
| 516 |
+
if self.load_dac:
|
| 517 |
+
for i in range(batch_size):
|
| 518 |
+
audio = self._decode(codebook[i, : lengths_Bx[i], :])
|
| 519 |
+
audio_np = audio.cpu().numpy()
|
| 520 |
+
audios.append(audio_np)
|
| 521 |
+
else:
|
| 522 |
+
for i in range(batch_size):
|
| 523 |
+
audios.append(codebook[i, : lengths_Bx[i], :].cpu().numpy())
|
| 524 |
+
return audios
|
| 525 |
+
|
| 526 |
+
@torch.no_grad()
|
| 527 |
+
@torch.inference_mode()
|
| 528 |
+
def _encode(self, audio: torch.Tensor) -> torch.Tensor:
|
| 529 |
+
"""
|
| 530 |
+
Encodes the given audio waveform into a tensor of DAC codebook indices
|
| 531 |
+
"""
|
| 532 |
+
audio = audio.unsqueeze(0)
|
| 533 |
+
audio_data = self.dac_model.preprocess(audio, DEFAULT_SAMPLE_RATE)
|
| 534 |
+
_, encoded_frame, _, _, _ = self.dac_model.encode(audio_data)
|
| 535 |
+
encoded_frame: torch.Tensor
|
| 536 |
+
return encoded_frame.squeeze(0).transpose(0, 1)
|
| 537 |
+
|
| 538 |
+
@torch.no_grad()
|
| 539 |
+
@torch.inference_mode()
|
| 540 |
+
def _decode(self, audio_codes: torch.Tensor) -> torch.Tensor:
|
| 541 |
+
"""
|
| 542 |
+
Decodes the given frames into an output audio waveform
|
| 543 |
+
"""
|
| 544 |
+
audio_codes = audio_codes.unsqueeze(0).transpose(1, 2)
|
| 545 |
+
audio_values, _, _ = self.dac_model.quantizer.from_codes(audio_codes)
|
| 546 |
+
audio_values = self.dac_model.decode(audio_values)
|
| 547 |
+
audio_values: torch.Tensor
|
| 548 |
+
return audio_values.squeeze()
|
| 549 |
+
|
| 550 |
+
def load_audio(self, audio_path: str) -> torch.Tensor:
|
| 551 |
+
"""Loads and preprocesses an audio file for use as a prompt.
|
| 552 |
+
|
| 553 |
+
Loads the audio file, resamples it to the target sample rate if necessary,
|
| 554 |
+
preprocesses it using the DAC model's preprocessing, and encodes it into
|
| 555 |
+
DAC codebook indices.
|
| 556 |
+
|
| 557 |
+
Args:
|
| 558 |
+
audio_path: Path to the audio file.
|
| 559 |
+
|
| 560 |
+
Returns:
|
| 561 |
+
torch.Tensor: The encoded audio prompt as DAC codebook indices,
|
| 562 |
+
shape [T, C].
|
| 563 |
+
|
| 564 |
+
Raises:
|
| 565 |
+
RuntimeError: If the DAC model is not loaded (`load_dac=False` during init).
|
| 566 |
+
FileNotFoundError: If the audio file cannot be found.
|
| 567 |
+
Exception: If there's an error during loading or processing.
|
| 568 |
+
"""
|
| 569 |
+
if self.dac_model is None:
|
| 570 |
+
raise RuntimeError("DAC model is required for loading audio prompts but was not loaded.")
|
| 571 |
+
audio, sr = torchaudio.load(audio_path, channels_first=True) # C, T
|
| 572 |
+
if sr != DEFAULT_SAMPLE_RATE:
|
| 573 |
+
audio = torchaudio.functional.resample(audio, sr, DEFAULT_SAMPLE_RATE)
|
| 574 |
+
# Convert to mono if stereo
|
| 575 |
+
if audio.shape[0] > 1:
|
| 576 |
+
audio = torch.mean(audio, dim=0, keepdim=True) # Average channels to get mono
|
| 577 |
+
return self._encode(audio.to(self.device))
|
| 578 |
+
|
| 579 |
+
def save_audio(self, path: str, audio: np.ndarray):
|
| 580 |
+
"""Saves the generated audio waveform to a file.
|
| 581 |
+
|
| 582 |
+
Uses the soundfile library to write the NumPy audio array to the specified
|
| 583 |
+
path with the default sample rate.
|
| 584 |
+
|
| 585 |
+
Args:
|
| 586 |
+
path: The path where the audio file will be saved.
|
| 587 |
+
audio: The audio waveform as a NumPy array.
|
| 588 |
+
"""
|
| 589 |
+
import soundfile as sf
|
| 590 |
+
|
| 591 |
+
sf.write(path, audio, DEFAULT_SAMPLE_RATE)
|
| 592 |
+
|
| 593 |
+
@torch.inference_mode()
|
| 594 |
+
def generate(
|
| 595 |
+
self,
|
| 596 |
+
text: str | list[str],
|
| 597 |
+
max_tokens: int = 3072,
|
| 598 |
+
cfg_scale: float = 3.0,
|
| 599 |
+
temperature: float = 1.2,
|
| 600 |
+
top_p: float = 0.95,
|
| 601 |
+
use_torch_compile: bool = False,
|
| 602 |
+
cfg_filter_top_k: int = 45,
|
| 603 |
+
audio_prompt: list[str | torch.Tensor | None] | str | torch.Tensor | None = None,
|
| 604 |
+
audio_prompt_path: list[str | torch.Tensor | None] | str | torch.Tensor | None = None,
|
| 605 |
+
use_cfg_filter: bool | None = None,
|
| 606 |
+
verbose: bool = False,
|
| 607 |
+
) -> np.ndarray | list[np.ndarray]:
|
| 608 |
+
"""Generates audio corresponding to the input text.
|
| 609 |
+
|
| 610 |
+
Args:
|
| 611 |
+
text: The input text prompt, or a list of text prompts for batch generation.
|
| 612 |
+
max_tokens: The maximum number of audio tokens to generate per prompt.
|
| 613 |
+
Defaults to the model's configured audio length if None.
|
| 614 |
+
cfg_scale: The scale factor for classifier-free guidance (CFG). Higher values
|
| 615 |
+
lead to stronger guidance towards the text prompt.
|
| 616 |
+
temperature: The temperature for sampling. Higher values increase randomness.
|
| 617 |
+
top_p: The cumulative probability threshold for nucleus (top-p) sampling.
|
| 618 |
+
use_torch_compile: Whether to compile the generation steps using torch.compile.
|
| 619 |
+
Can significantly speed up generation after the initial
|
| 620 |
+
compilation overhead. Defaults to False.
|
| 621 |
+
cfg_filter_top_k: The number of top logits to consider during CFG filtering.
|
| 622 |
+
(Note: This parameter name might be slightly misleading based
|
| 623 |
+
on the code; it's used in the `_sample_next_token` function.)
|
| 624 |
+
audio_prompt: An audio prompt or list of prompts to condition the generation.
|
| 625 |
+
Can be a file path (str), a pre-loaded tensor (DAC codes), or None.
|
| 626 |
+
If a list, its length must match the batch size of the text input.
|
| 627 |
+
audio_prompt_path: (Deprecated) Use `audio_prompt` instead.
|
| 628 |
+
use_cfg_filter: (Deprecated) This parameter is no longer used.
|
| 629 |
+
verbose: If True, prints progress information during generation, including
|
| 630 |
+
speed metrics.
|
| 631 |
+
|
| 632 |
+
Returns:
|
| 633 |
+
If a single text prompt was provided, returns a NumPy array containing the
|
| 634 |
+
generated audio waveform.
|
| 635 |
+
If a list of text prompts was provided, returns a list of NumPy arrays,
|
| 636 |
+
each corresponding to a prompt in the input list. Returns None for a
|
| 637 |
+
sequence if no audio was generated for it.
|
| 638 |
+
"""
|
| 639 |
+
batch_size = len(text) if isinstance(text, list) else 1
|
| 640 |
+
audio_eos_value = self.config.eos_token_id
|
| 641 |
+
audio_pad_value = self.config.pad_token_id
|
| 642 |
+
delay_pattern = self.config.delay_pattern
|
| 643 |
+
max_delay_pattern = max(delay_pattern)
|
| 644 |
+
delay_pattern_Cx = torch.tensor(delay_pattern, device=self.device, dtype=torch.long)
|
| 645 |
+
self.model.eval()
|
| 646 |
+
|
| 647 |
+
if audio_prompt_path:
|
| 648 |
+
print("Warning: audio_prompt_path is deprecated. Use audio_prompt instead.")
|
| 649 |
+
audio_prompt = audio_prompt_path
|
| 650 |
+
if use_cfg_filter is not None:
|
| 651 |
+
print("Warning: use_cfg_filter is deprecated.")
|
| 652 |
+
|
| 653 |
+
if verbose:
|
| 654 |
+
total_start_time = time.time()
|
| 655 |
+
|
| 656 |
+
if use_torch_compile and not hasattr(self, "_compiled"):
|
| 657 |
+
# Compilation can take about a minute.
|
| 658 |
+
self._prepare_generation = torch.compile(self._prepare_generation, dynamic=True, fullgraph=True)
|
| 659 |
+
self._decoder_step = torch.compile(self._decoder_step, fullgraph=True, mode="max-autotune")
|
| 660 |
+
self._compiled = True
|
| 661 |
+
|
| 662 |
+
if isinstance(audio_prompt, list):
|
| 663 |
+
audio_prompt = [self.load_audio(p) if isinstance(p, str) else p for p in audio_prompt]
|
| 664 |
+
elif isinstance(audio_prompt, str):
|
| 665 |
+
audio_prompt = [self.load_audio(audio_prompt)]
|
| 666 |
+
elif isinstance(audio_prompt, torch.Tensor):
|
| 667 |
+
audio_prompt = [audio_prompt]
|
| 668 |
+
elif audio_prompt is None:
|
| 669 |
+
audio_prompt = [None] * batch_size
|
| 670 |
+
|
| 671 |
+
assert len(audio_prompt) == batch_size, "Number of audio prompts must match batch size"
|
| 672 |
+
|
| 673 |
+
if isinstance(text, list):
|
| 674 |
+
text = [self._encode_text(t) for t in text]
|
| 675 |
+
else:
|
| 676 |
+
text = [self._encode_text(text)]
|
| 677 |
+
text = self._pad_text_input(text)
|
| 678 |
+
|
| 679 |
+
dec_state, dec_output = self._prepare_generation(text, audio_prompt, max_tokens=max_tokens)
|
| 680 |
+
dec_step = min(dec_output.prefill_steps) - 1
|
| 681 |
+
current_idx = torch.tensor([dec_step], device=self.device)
|
| 682 |
+
|
| 683 |
+
eos_detected_Bx = torch.zeros((batch_size,), dtype=torch.bool, device=self.device)
|
| 684 |
+
eos_countdown_Bx = torch.full((batch_size,), -1, dtype=torch.long, device=self.device)
|
| 685 |
+
finished_step_Bx = torch.full((batch_size,), -1, dtype=torch.long, device=self.device)
|
| 686 |
+
|
| 687 |
+
bos_over = False
|
| 688 |
+
|
| 689 |
+
if verbose:
|
| 690 |
+
print("generate: starting generation loop")
|
| 691 |
+
if use_torch_compile:
|
| 692 |
+
print("generate: using use_torch_compile=True, the first step may be slow")
|
| 693 |
+
start_time = time.time()
|
| 694 |
+
|
| 695 |
+
# --- Generation Loop ---
|
| 696 |
+
while dec_step < max_tokens:
|
| 697 |
+
if (eos_countdown_Bx == 0).all():
|
| 698 |
+
break
|
| 699 |
+
|
| 700 |
+
current_step_idx = dec_step + 1
|
| 701 |
+
torch.compiler.cudagraph_mark_step_begin()
|
| 702 |
+
dec_state.prepare_step(dec_step)
|
| 703 |
+
tokens_Bx1xC = dec_output.get_tokens_at(dec_step).repeat_interleave(2, dim=0) # Repeat for CFG
|
| 704 |
+
|
| 705 |
+
pred_BxC = self._decoder_step(
|
| 706 |
+
tokens_Bx1xC,
|
| 707 |
+
dec_state,
|
| 708 |
+
cfg_scale,
|
| 709 |
+
temperature,
|
| 710 |
+
top_p,
|
| 711 |
+
cfg_filter_top_k,
|
| 712 |
+
current_idx,
|
| 713 |
+
)
|
| 714 |
+
|
| 715 |
+
current_idx += 1
|
| 716 |
+
|
| 717 |
+
active_mask_Bx = eos_countdown_Bx != 0
|
| 718 |
+
eos_trigger_Bx = torch.zeros_like(active_mask_Bx)
|
| 719 |
+
if active_mask_Bx.any():
|
| 720 |
+
is_eos_token = (~eos_detected_Bx[active_mask_Bx]) & (pred_BxC[active_mask_Bx, 0] == audio_eos_value)
|
| 721 |
+
is_max_len = current_step_idx >= max_tokens - max_delay_pattern
|
| 722 |
+
eos_trigger_Bx[active_mask_Bx] = is_eos_token | is_max_len
|
| 723 |
+
eos_detected_Bx |= eos_trigger_Bx
|
| 724 |
+
start_countdown_mask_Bx = eos_trigger_Bx & (eos_countdown_Bx < 0)
|
| 725 |
+
if start_countdown_mask_Bx.any():
|
| 726 |
+
eos_countdown_Bx[start_countdown_mask_Bx] = max_delay_pattern
|
| 727 |
+
finished_step_Bx[start_countdown_mask_Bx] = current_step_idx
|
| 728 |
+
|
| 729 |
+
padding_mask_Bx = eos_countdown_Bx > 0
|
| 730 |
+
if padding_mask_Bx.any():
|
| 731 |
+
pred_active_BxC = pred_BxC[padding_mask_Bx].clone()
|
| 732 |
+
countdown_active_Bx = eos_countdown_Bx[padding_mask_Bx]
|
| 733 |
+
step_after_eos_Bx = max_delay_pattern - countdown_active_Bx
|
| 734 |
+
step_after_eos_Bx_ = step_after_eos_Bx.unsqueeze(1)
|
| 735 |
+
delay_pattern_Cx_ = delay_pattern_Cx.unsqueeze(0)
|
| 736 |
+
eos_mask_NxC = step_after_eos_Bx_ == delay_pattern_Cx_
|
| 737 |
+
pad_mask_NxC = step_after_eos_Bx_ > delay_pattern_Cx_
|
| 738 |
+
pred_active_BxC[eos_mask_NxC] = audio_eos_value
|
| 739 |
+
pred_active_BxC[pad_mask_NxC] = audio_pad_value
|
| 740 |
+
pred_BxC[padding_mask_Bx] = pred_active_BxC
|
| 741 |
+
eos_countdown_Bx[padding_mask_Bx] -= 1
|
| 742 |
+
|
| 743 |
+
# --- Update BOS flag (Original) ---
|
| 744 |
+
if not bos_over:
|
| 745 |
+
bos_over = all(
|
| 746 |
+
dec_step - prefill_step > max_delay_pattern for prefill_step in dec_output.prefill_steps
|
| 747 |
+
)
|
| 748 |
+
|
| 749 |
+
dec_output.update_one(pred_BxC, current_step_idx, not bos_over)
|
| 750 |
+
|
| 751 |
+
dec_step += 1
|
| 752 |
+
|
| 753 |
+
if verbose and dec_step % 86 == 0:
|
| 754 |
+
duration = time.time() - start_time
|
| 755 |
+
if duration > 0:
|
| 756 |
+
print(
|
| 757 |
+
f"generate step {dec_step}: speed={86 * batch_size / duration:.3f} tokens/s, realtime factor={batch_size / duration:.3f}x"
|
| 758 |
+
)
|
| 759 |
+
start_time = time.time()
|
| 760 |
+
|
| 761 |
+
# --- Finalize and Extract Output ---
|
| 762 |
+
final_step = dec_step + 1
|
| 763 |
+
|
| 764 |
+
finished_step_Bx[finished_step_Bx == -1] = final_step - max_delay_pattern
|
| 765 |
+
|
| 766 |
+
prefill_steps_tensor = torch.tensor(dec_output.prefill_steps, device=self.device)
|
| 767 |
+
lengths_Bx = finished_step_Bx - prefill_steps_tensor
|
| 768 |
+
lengths_Bx = torch.clamp(lengths_Bx, min=0)
|
| 769 |
+
|
| 770 |
+
max_len = lengths_Bx.max().item() + max_delay_pattern
|
| 771 |
+
outputs = []
|
| 772 |
+
|
| 773 |
+
if max_len > 0:
|
| 774 |
+
num_channels = self.config.decoder_config.num_channels
|
| 775 |
+
audio_pad_value = self.config.pad_token_id
|
| 776 |
+
generated_codes = torch.full(
|
| 777 |
+
(batch_size, max_len, num_channels),
|
| 778 |
+
fill_value=audio_pad_value,
|
| 779 |
+
dtype=torch.long,
|
| 780 |
+
device=self.device,
|
| 781 |
+
)
|
| 782 |
+
|
| 783 |
+
for i in range(batch_size):
|
| 784 |
+
start_step = dec_output.prefill_steps[i]
|
| 785 |
+
actual_len = lengths_Bx[i].item() + max_delay_pattern
|
| 786 |
+
if actual_len > 0:
|
| 787 |
+
tokens_to_copy = dec_output.generated_tokens[i, start_step : start_step + actual_len, :]
|
| 788 |
+
generated_codes[i, :actual_len, :] = tokens_to_copy
|
| 789 |
+
|
| 790 |
+
if verbose:
|
| 791 |
+
avg_steps = lengths_Bx.float().mean().item()
|
| 792 |
+
total_duration = time.time() - total_start_time
|
| 793 |
+
print(f"generate: avg steps={avg_steps:.1f}, total duration={total_duration:.3f}s")
|
| 794 |
+
|
| 795 |
+
del dec_state
|
| 796 |
+
|
| 797 |
+
outputs = self._generate_output(generated_codes, lengths_Bx)
|
| 798 |
+
else:
|
| 799 |
+
print("Warning: Nothing generated for any sequence in the batch.")
|
| 800 |
+
outputs = [None] * batch_size
|
| 801 |
+
|
| 802 |
+
return outputs if batch_size > 1 else outputs[0]
|
dia/state.py
ADDED
|
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Optional
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from .config import DiaConfig
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def create_attn_mask(
|
| 10 |
+
q_padding_mask_1d: torch.Tensor,
|
| 11 |
+
k_padding_mask_1d: torch.Tensor,
|
| 12 |
+
device: torch.device,
|
| 13 |
+
is_causal: bool = False,
|
| 14 |
+
) -> torch.Tensor:
|
| 15 |
+
"""
|
| 16 |
+
Creates the attention mask (self or cross) mimicking JAX segment ID logic.
|
| 17 |
+
"""
|
| 18 |
+
# B1, Tq = q_padding_mask_1d.shape
|
| 19 |
+
# B2, Tk = k_padding_mask_1d.shape
|
| 20 |
+
|
| 21 |
+
p_mask_q = q_padding_mask_1d.unsqueeze(2) # Shape [B, Tq, 1]
|
| 22 |
+
p_mask_k = k_padding_mask_1d.unsqueeze(1) # Shape [B, 1, Tk]
|
| 23 |
+
|
| 24 |
+
# Condition A: Non-padding query attends to non-padding key
|
| 25 |
+
non_pad_attends_non_pad = p_mask_q & p_mask_k # Shape [B, Tq, Tk]
|
| 26 |
+
|
| 27 |
+
# Condition B: Padding query attends to padding key
|
| 28 |
+
pad_attends_pad = (~p_mask_q) & (~p_mask_k) # Shape [B, Tq, Tk]
|
| 29 |
+
|
| 30 |
+
# Combine: True if padding status is compatible (both non-pad OR both pad)
|
| 31 |
+
mask = non_pad_attends_non_pad | pad_attends_pad # Shape [B, Tq, Tk]
|
| 32 |
+
|
| 33 |
+
if is_causal:
|
| 34 |
+
# assert Tq == Tk, "Causal mask requires query and key sequence lengths to be equal"
|
| 35 |
+
causal_mask_2d = torch.tril(torch.ones_like(mask[0], dtype=torch.bool, device=device)) # Shape [B, Tq, Tk]
|
| 36 |
+
causal_mask = mask & causal_mask_2d # Shape [B, Tq, Tk]
|
| 37 |
+
return causal_mask.unsqueeze(1) # Shape [B, 1, Tq, Tk]
|
| 38 |
+
else:
|
| 39 |
+
return mask.unsqueeze(1) # Shape [B, 1, Tq, Tk]
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
@dataclass
|
| 43 |
+
class EncoderInferenceState:
|
| 44 |
+
"""Parameters specifically for encoder inference."""
|
| 45 |
+
|
| 46 |
+
max_seq_len: int
|
| 47 |
+
device: torch.device
|
| 48 |
+
positions: torch.Tensor
|
| 49 |
+
padding_mask: torch.Tensor
|
| 50 |
+
attn_mask: torch.Tensor
|
| 51 |
+
|
| 52 |
+
@classmethod
|
| 53 |
+
def new(cls, config: DiaConfig, cond_src: torch.Tensor) -> "EncoderInferenceState":
|
| 54 |
+
"""Creates EtorchrInferenceParams from DiaConfig and a device."""
|
| 55 |
+
device = cond_src.device
|
| 56 |
+
|
| 57 |
+
positions = torch.arange(
|
| 58 |
+
config.encoder_config.max_position_embeddings, dtype=torch.float32, device=device
|
| 59 |
+
).unsqueeze(0)
|
| 60 |
+
padding_mask = (cond_src.squeeze(1) != 0).to(device).repeat_interleave(2, dim=0)
|
| 61 |
+
attn_mask = create_attn_mask(padding_mask, padding_mask, device, is_causal=False)
|
| 62 |
+
|
| 63 |
+
return cls(
|
| 64 |
+
max_seq_len=config.encoder_config.max_position_embeddings,
|
| 65 |
+
device=device,
|
| 66 |
+
positions=positions,
|
| 67 |
+
padding_mask=padding_mask,
|
| 68 |
+
attn_mask=attn_mask,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class KVCache(torch.nn.Module):
|
| 73 |
+
k: torch.Tensor
|
| 74 |
+
v: torch.Tensor
|
| 75 |
+
|
| 76 |
+
def __init__(
|
| 77 |
+
self,
|
| 78 |
+
batch_size: int,
|
| 79 |
+
num_heads: int,
|
| 80 |
+
max_len: int,
|
| 81 |
+
head_dim: int,
|
| 82 |
+
dtype: torch.dtype,
|
| 83 |
+
device: torch.device,
|
| 84 |
+
k: torch.Tensor | None = None,
|
| 85 |
+
v: torch.Tensor | None = None,
|
| 86 |
+
):
|
| 87 |
+
k = torch.zeros((2 * batch_size, num_heads, max_len, head_dim), dtype=dtype, device=device) if k is None else k
|
| 88 |
+
v = torch.zeros((2 * batch_size, num_heads, max_len, head_dim), dtype=dtype, device=device) if v is None else v
|
| 89 |
+
super().__init__()
|
| 90 |
+
|
| 91 |
+
self.register_buffer("k", k)
|
| 92 |
+
self.register_buffer("v", v)
|
| 93 |
+
|
| 94 |
+
@classmethod
|
| 95 |
+
def from_kv(cls, k: torch.Tensor, v: torch.Tensor) -> "KVCache":
|
| 96 |
+
return cls(
|
| 97 |
+
batch_size=k.shape[0] // 2,
|
| 98 |
+
num_heads=k.shape[1],
|
| 99 |
+
max_len=k.shape[2],
|
| 100 |
+
head_dim=k.shape[3],
|
| 101 |
+
dtype=k.dtype,
|
| 102 |
+
device=k.device,
|
| 103 |
+
k=k,
|
| 104 |
+
v=v,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
def update(self, k: torch.Tensor, v: torch.Tensor, current_idx: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
| 108 |
+
k_out, v_out = self.k, self.v
|
| 109 |
+
k_out[:, :, current_idx, :] = k
|
| 110 |
+
v_out[:, :, current_idx, :] = v
|
| 111 |
+
return self.k, self.v
|
| 112 |
+
|
| 113 |
+
def prefill(self, k: torch.Tensor, v: torch.Tensor):
|
| 114 |
+
prefill_len = k.shape[2]
|
| 115 |
+
self.k[:, :, :prefill_len, :] = k
|
| 116 |
+
self.v[:, :, :prefill_len, :] = v
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
@dataclass
|
| 120 |
+
class DecoderInferenceState:
|
| 121 |
+
"""Parameters specifically for decoder inference."""
|
| 122 |
+
|
| 123 |
+
device: torch.device
|
| 124 |
+
dtype: torch.dtype
|
| 125 |
+
enc_out: torch.Tensor
|
| 126 |
+
enc_positions: torch.Tensor
|
| 127 |
+
dec_positions: torch.Tensor
|
| 128 |
+
self_attn_cache: list[KVCache]
|
| 129 |
+
cross_attn_cache: list[KVCache]
|
| 130 |
+
casual_attn_mask: torch.Tensor
|
| 131 |
+
cross_attn_mask: torch.Tensor
|
| 132 |
+
|
| 133 |
+
@classmethod
|
| 134 |
+
def new(
|
| 135 |
+
cls,
|
| 136 |
+
config: DiaConfig,
|
| 137 |
+
enc_state: EncoderInferenceState,
|
| 138 |
+
enc_out: torch.Tensor,
|
| 139 |
+
dec_cross_attn_cache: list[KVCache],
|
| 140 |
+
compute_dtype: torch.dtype,
|
| 141 |
+
max_generation_length: Optional[int] = None,
|
| 142 |
+
) -> "DecoderInferenceState":
|
| 143 |
+
"""Creates DecoderInferenceParams from DiaConfig and a device."""
|
| 144 |
+
device = enc_out.device
|
| 145 |
+
max_audio_len = max_generation_length or config.decoder_config.max_position_embeddings
|
| 146 |
+
batch_size = enc_out.shape[0] // 2
|
| 147 |
+
|
| 148 |
+
dec_positions = torch.full((2 * batch_size, 1), fill_value=0, dtype=torch.int32, device=device)
|
| 149 |
+
causal_mask = torch.tril(torch.ones(max_audio_len, max_audio_len, dtype=torch.bool, device=device))
|
| 150 |
+
dec_mask = torch.ones((2 * batch_size, 1), dtype=torch.bool, device=device)
|
| 151 |
+
cross_attn_mask = create_attn_mask(dec_mask, enc_state.padding_mask, device, is_causal=False)
|
| 152 |
+
|
| 153 |
+
self_attn_cache = [
|
| 154 |
+
KVCache(
|
| 155 |
+
batch_size,
|
| 156 |
+
config.decoder_config.num_key_value_heads,
|
| 157 |
+
max_audio_len,
|
| 158 |
+
config.decoder_config.head_dim,
|
| 159 |
+
compute_dtype,
|
| 160 |
+
device,
|
| 161 |
+
)
|
| 162 |
+
for _ in range(config.decoder_config.num_hidden_layers)
|
| 163 |
+
]
|
| 164 |
+
|
| 165 |
+
return cls(
|
| 166 |
+
device=device,
|
| 167 |
+
dtype=compute_dtype,
|
| 168 |
+
enc_out=enc_out,
|
| 169 |
+
enc_positions=enc_state.positions,
|
| 170 |
+
dec_positions=dec_positions,
|
| 171 |
+
self_attn_cache=self_attn_cache,
|
| 172 |
+
cross_attn_cache=dec_cross_attn_cache,
|
| 173 |
+
casual_attn_mask=causal_mask,
|
| 174 |
+
cross_attn_mask=cross_attn_mask,
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
def prepare_step(self, step_from: int, step_to: int | None = None) -> None:
|
| 178 |
+
if step_to is None:
|
| 179 |
+
step_to = step_from + 1
|
| 180 |
+
self.dec_positions = torch.arange(step_from, step_to, dtype=torch.int32, device=self.device).unsqueeze(0)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
@dataclass
|
| 184 |
+
class DecoderOutput:
|
| 185 |
+
generated_tokens: torch.Tensor
|
| 186 |
+
prefill_steps: list[int]
|
| 187 |
+
|
| 188 |
+
@classmethod
|
| 189 |
+
def new(cls, batch_size: int, config: DiaConfig, device: torch.device) -> "DecoderOutput":
|
| 190 |
+
max_audio_len = config.decoder_config.max_position_embeddings
|
| 191 |
+
return cls(
|
| 192 |
+
generated_tokens=torch.full(
|
| 193 |
+
(batch_size, max_audio_len, config.decoder_config.num_channels),
|
| 194 |
+
fill_value=-1,
|
| 195 |
+
dtype=torch.int,
|
| 196 |
+
device=device,
|
| 197 |
+
),
|
| 198 |
+
prefill_steps=[],
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
def get_tokens_at(self, step_from: int, step_to: int | None = None) -> torch.Tensor:
|
| 202 |
+
if step_to is None:
|
| 203 |
+
step_to = step_from + 1
|
| 204 |
+
return self.generated_tokens[:, step_from:step_to, :]
|
| 205 |
+
|
| 206 |
+
def update_one(self, dec_out: torch.Tensor, step: int, apply_mask: bool = False):
|
| 207 |
+
dec_out = dec_out.to(self.generated_tokens.dtype)
|
| 208 |
+
if apply_mask:
|
| 209 |
+
mask = self.generated_tokens[:, step, :] == -1
|
| 210 |
+
self.generated_tokens[:, step, :] = torch.where(mask, dec_out, self.generated_tokens[:, step, :])
|
| 211 |
+
else:
|
| 212 |
+
self.generated_tokens[:, step, :] = dec_out
|
| 213 |
+
|
| 214 |
+
def prefill(self, dec_out: torch.Tensor, prefill_steps: list[int]):
|
| 215 |
+
length = dec_out.shape[1]
|
| 216 |
+
self.generated_tokens[:, :length, :] = dec_out
|
| 217 |
+
self.prefill_steps = prefill_steps
|
dia/static/images/banner.png
ADDED
|
Git LFS Details
|
docker/Dockerfile.cpu
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Dockerfile.cpu - CPU-only deployment for DIA
|
| 2 |
+
# --------------------------------------------------
|
| 3 |
+
# Build: docker build . -f docker/Dockerfile.cpu -t dia-cpu
|
| 4 |
+
# Run: docker run --rm -p 7860:7860 dia-cpu
|
| 5 |
+
|
| 6 |
+
FROM python:3.10-slim
|
| 7 |
+
|
| 8 |
+
# Set non-interactive frontend
|
| 9 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
| 10 |
+
|
| 11 |
+
# Install venv, and system dependencies
|
| 12 |
+
RUN apt-get update && apt-get install -y \
|
| 13 |
+
python3-venv \
|
| 14 |
+
libsndfile1 \
|
| 15 |
+
ffmpeg \
|
| 16 |
+
curl \
|
| 17 |
+
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
| 18 |
+
|
| 19 |
+
# Create non-root user and set up directories
|
| 20 |
+
RUN useradd -m -u 1001 appuser && \
|
| 21 |
+
mkdir -p /app/outputs /app && \
|
| 22 |
+
chown -R appuser:appuser /app
|
| 23 |
+
|
| 24 |
+
USER appuser
|
| 25 |
+
WORKDIR /app
|
| 26 |
+
|
| 27 |
+
# Copy all code (including pyproject.toml)
|
| 28 |
+
COPY --chown=appuser:appuser . .
|
| 29 |
+
|
| 30 |
+
# Create and activate virtual environment
|
| 31 |
+
RUN python3 -m venv /app/venv
|
| 32 |
+
ENV PATH="/app/venv/bin:$PATH"
|
| 33 |
+
|
| 34 |
+
# Install all project dependencies (CPU-only PyTorch)
|
| 35 |
+
RUN pip install --upgrade pip && \
|
| 36 |
+
pip install torch torchaudio --index-url https://download.pytorch.org/whl/cpu && \
|
| 37 |
+
pip install --no-cache-dir -e .[dev]
|
| 38 |
+
|
| 39 |
+
# Set environment variables
|
| 40 |
+
ENV PYTHONUNBUFFERED=1 \
|
| 41 |
+
PYTHONPATH=/app
|
| 42 |
+
|
| 43 |
+
# Expose Gradio default port
|
| 44 |
+
ENV GRADIO_SERVER_NAME="0.0.0.0"
|
| 45 |
+
EXPOSE 7860
|
| 46 |
+
|
| 47 |
+
# Entrypoint
|
| 48 |
+
CMD ["python3", "app.py"]
|
docker/Dockerfile.gpu
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Dockerfile.gpu - GPU deployment for DIA
|
| 2 |
+
# --------------------------------------------------
|
| 3 |
+
# Build: docker build . -f docker/Dockerfile.gpu -t dia-gpu
|
| 4 |
+
# Run: docker run --rm --gpus all -p 7860:7860 dia-gpu
|
| 5 |
+
# Requires NVIDIA Container Toolkit on host.
|
| 6 |
+
|
| 7 |
+
FROM pytorch/pytorch:2.1.2-cuda12.1-cudnn8-runtime
|
| 8 |
+
|
| 9 |
+
# Set non-interactive frontend
|
| 10 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
| 11 |
+
|
| 12 |
+
# Install venv, and system dependencies
|
| 13 |
+
RUN apt-get update && apt-get install -y \
|
| 14 |
+
python3-venv \
|
| 15 |
+
libsndfile1 \
|
| 16 |
+
ffmpeg \
|
| 17 |
+
curl \
|
| 18 |
+
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
| 19 |
+
|
| 20 |
+
# Create non-root user and set up directories
|
| 21 |
+
RUN useradd -m -u 1001 appuser && \
|
| 22 |
+
mkdir -p /app/outputs /app && \
|
| 23 |
+
chown -R appuser:appuser /app
|
| 24 |
+
|
| 25 |
+
USER appuser
|
| 26 |
+
WORKDIR /app
|
| 27 |
+
|
| 28 |
+
# Copy all code (including pyproject.toml)
|
| 29 |
+
COPY --chown=appuser:appuser . .
|
| 30 |
+
|
| 31 |
+
# Create and activate virtual environment
|
| 32 |
+
RUN python3 -m venv /app/venv
|
| 33 |
+
ENV PATH="/app/venv/bin:$PATH"
|
| 34 |
+
|
| 35 |
+
# Install all project dependencies
|
| 36 |
+
RUN pip install --upgrade pip && pip install --no-cache-dir .
|
| 37 |
+
|
| 38 |
+
# Set environment variables
|
| 39 |
+
ENV PYTHONUNBUFFERED=1 \
|
| 40 |
+
PYTHONPATH=/app \
|
| 41 |
+
USE_GPU=true \
|
| 42 |
+
LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda-12.1/lib64:${LD_LIBRARY_PATH}
|
| 43 |
+
|
| 44 |
+
# Expose Gradio default port
|
| 45 |
+
ENV GRADIO_SERVER_NAME="0.0.0.0"
|
| 46 |
+
EXPOSE 7860
|
| 47 |
+
|
| 48 |
+
# Entrypoint
|
| 49 |
+
CMD ["python3", "app.py"]
|
example/benchmark.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from random import choice
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from dia.model import Dia
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
torch._inductor.config.coordinate_descent_tuning = True
|
| 9 |
+
torch._inductor.config.triton.unique_kernel_names = True
|
| 10 |
+
torch._inductor.config.fx_graph_cache = True
|
| 11 |
+
|
| 12 |
+
# debugging
|
| 13 |
+
torch._logging.set_logs(graph_breaks=True, recompiles=True)
|
| 14 |
+
|
| 15 |
+
model_name = "nari-labs/Dia-1.6B-0626"
|
| 16 |
+
compute_dtype = "float16"
|
| 17 |
+
|
| 18 |
+
model = Dia.from_pretrained(model_name, compute_dtype=compute_dtype)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
test_cases = [
|
| 22 |
+
"[S1] Dia is an open weights text to dialogue model.",
|
| 23 |
+
"[S1] Dia is an open weights text to dialogue model. [S2] You get full control over scripts and voices. [S1] Wow. Amazing. (laughs) [S2] Try it now on Git hub or Hugging Face.",
|
| 24 |
+
"[S1] torch.compile is a new feature in PyTorch that allows you to compile your model with a single line of code.",
|
| 25 |
+
"[S1] torch.compile is a new feature in PyTorch that allows you to compile your model with a single line of code. [S2] It is a new feature in PyTorch that allows you to compile your model with a single line of code.",
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# Wram up
|
| 30 |
+
for _ in range(2):
|
| 31 |
+
text = choice(test_cases)
|
| 32 |
+
output = model.generate(text, audio_prompt="./example_prompt.mp3", use_torch_compile=True, verbose=True)
|
| 33 |
+
output = model.generate(text, use_torch_compile=True, verbose=True)
|
| 34 |
+
|
| 35 |
+
# Benchmark
|
| 36 |
+
for _ in range(10):
|
| 37 |
+
text = choice(test_cases)
|
| 38 |
+
output = model.generate(text, use_torch_compile=True, verbose=True)
|
| 39 |
+
output = model.generate(text, audio_prompt="./example_prompt.mp3", use_torch_compile=True, verbose=True)
|
example/simple-cpu.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
from dia.model import Dia
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# Select device: CPU
|
| 7 |
+
device = torch.device("cpu")
|
| 8 |
+
print(f"Using device: {device}")
|
| 9 |
+
|
| 10 |
+
# Load model
|
| 11 |
+
model = Dia.from_pretrained(
|
| 12 |
+
"nari-labs/Dia-1.6B-0626", compute_dtype="float32", device=device
|
| 13 |
+
) # Float32 works better than float16 on CPU - you can also test with float16
|
| 14 |
+
|
| 15 |
+
text = "[S1] Dia is an open weights text to dialogue model. [S2] You get full control over scripts and voices. [S1] Wow. Amazing. (laughs) [S2] Try it now on Git hub or Hugging Face."
|
| 16 |
+
|
| 17 |
+
output = model.generate(text, use_torch_compile=False, verbose=True)
|
| 18 |
+
|
| 19 |
+
model.save_audio("simple.mp3", output)
|
example/simple-mac.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dia.model import Dia
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
model = Dia.from_pretrained("nari-labs/Dia-1.6B-0626", compute_dtype="float16")
|
| 5 |
+
|
| 6 |
+
text = "[S1] Dia is an open weights text to dialogue model. [S2] You get full control over scripts and voices. [S1] Wow. Amazing. (laughs) [S2] Try it now on Git hub or Hugging Face."
|
| 7 |
+
|
| 8 |
+
# It is important to set the `use_torch_compile` argument to `False` when using Dia on MacOS.
|
| 9 |
+
# This is because the `torch.compile` function is not supported on MacOS.
|
| 10 |
+
output = model.generate(text, use_torch_compile=False, verbose=True)
|
| 11 |
+
|
| 12 |
+
model.save_audio("simple.mp3", output)
|
example/simple.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dia.model import Dia
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
model = Dia.from_pretrained("nari-labs/Dia-1.6B-0626", compute_dtype="float16")
|
| 5 |
+
|
| 6 |
+
text = "[S1] Dia is an open weights text to dialogue model. [S2] You get full control over scripts and voices. [S1] Wow. Amazing. (laughs) [S2] Try it now on Git hub or Hugging Face."
|
| 7 |
+
|
| 8 |
+
output = model.generate(
|
| 9 |
+
text,
|
| 10 |
+
use_torch_compile=False,
|
| 11 |
+
verbose=True,
|
| 12 |
+
cfg_scale=3.0,
|
| 13 |
+
temperature=1.8,
|
| 14 |
+
top_p=0.90,
|
| 15 |
+
cfg_filter_top_k=50,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
model.save_audio("simple.mp3", output)
|
example/simple_batch.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dia.model import Dia
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
model = Dia.from_pretrained("nari-labs/Dia-1.6B-0626", compute_dtype="float16")
|
| 5 |
+
|
| 6 |
+
text = "[S1] Dia is an open weights text to dialogue model. [S2] You get full control over scripts and voices. [S1] Wow. Amazing. (laughs) [S2] Try it now on Git hub or Hugging Face."
|
| 7 |
+
texts = [text for _ in range(10)]
|
| 8 |
+
|
| 9 |
+
output = model.generate(texts, use_torch_compile=True, verbose=True, max_tokens=1500)
|
| 10 |
+
|
| 11 |
+
for i, o in enumerate(output):
|
| 12 |
+
model.save_audio(f"simple_{i}.mp3", o)
|
example/voice_clone.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dia.model import Dia
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
model = Dia.from_pretrained("nari-labs/Dia-1.6B-0626", compute_dtype="float16")
|
| 5 |
+
|
| 6 |
+
# You should put the transcript of the voice you want to clone
|
| 7 |
+
# We will use the audio created by running simple.py as an example.
|
| 8 |
+
# Note that you will be REQUIRED TO RUN simple.py for the script to work as-is.
|
| 9 |
+
clone_from_text = "[S1] Dia is an open weights text to dialogue model. [S2] You get full control over scripts and voices. [S1] Wow. Amazing. (laughs) [S2] Try it now on Git hub or Hugging Face."
|
| 10 |
+
clone_from_audio = "simple.mp3"
|
| 11 |
+
|
| 12 |
+
# For your custom needs, replace above with below and add your audio file to this directory:
|
| 13 |
+
# clone_from_text = "[S1] ... [S2] ... [S1] ... corresponding to your_audio_name.mp3"
|
| 14 |
+
# clone_from_audio = "your_audio_name.mp3"
|
| 15 |
+
|
| 16 |
+
# Text to generate
|
| 17 |
+
text_to_generate = "[S1] Hello, how are you? [S2] I'm good, thank you. [S1] What's your name? [S2] My name is Dia. [S1] Nice to meet you. [S2] Nice to meet you too."
|
| 18 |
+
|
| 19 |
+
# It will only return the audio from the text_to_generate
|
| 20 |
+
output = model.generate(
|
| 21 |
+
clone_from_text + text_to_generate,
|
| 22 |
+
audio_prompt=clone_from_audio,
|
| 23 |
+
use_torch_compile=False,
|
| 24 |
+
verbose=True,
|
| 25 |
+
cfg_scale=4.0,
|
| 26 |
+
temperature=1.8,
|
| 27 |
+
top_p=0.90,
|
| 28 |
+
cfg_filter_top_k=50,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
model.save_audio("voice_clone.mp3", output)
|
example/voice_clone_batch.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dia.model import Dia
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
model = Dia.from_pretrained("nari-labs/Dia-1.6B-0626", compute_dtype="float16")
|
| 5 |
+
|
| 6 |
+
# You should put the transcript of the voice you want to clone
|
| 7 |
+
# We will use the audio created by running simple.py as an example.
|
| 8 |
+
# Note that you will be REQUIRED TO RUN simple.py for the script to work as-is.
|
| 9 |
+
clone_from_text = "[S1] Dia is an open weights text to dialogue model. [S2] You get full control over scripts and voices. [S1] Wow. Amazing. (laughs) [S2] Try it now on Git hub or Hugging Face."
|
| 10 |
+
|
| 11 |
+
# For your custom needs, replace above with below and add your audio file to this directory:
|
| 12 |
+
# clone_from_text = "[S1] ... [S2] ... [S1] ... corresponding to your_audio_name.mp3"
|
| 13 |
+
# clone_from_audio = "your_audio_name.mp3"
|
| 14 |
+
|
| 15 |
+
# Text to generate
|
| 16 |
+
text_to_generate = "[S1] Dia is an open weights text to dialogue model. [S2] You get full control over scripts and voices. [S1] Wow. Amazing. (laughs) [S2] Try it now on Git hub or Hugging Face."
|
| 17 |
+
|
| 18 |
+
clone_from_audios = [f"simple_{i}.mp3" for i in range(10)]
|
| 19 |
+
|
| 20 |
+
texts = [clone_from_text + text_to_generate for _ in range(10)]
|
| 21 |
+
|
| 22 |
+
# It will only return the audio from the text_to_generate
|
| 23 |
+
output = model.generate(texts, audio_prompt=clone_from_audios, use_torch_compile=True, verbose=True, max_tokens=2000)
|
| 24 |
+
|
| 25 |
+
for i, o in enumerate(output):
|
| 26 |
+
model.save_audio(f"voice_clone_{i}.mp3", o)
|
example_prompt.mp3
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:576f5134df511edffcd0b5c87c91d829811d825c48845b3b9a156e1e7dd730e1
|
| 3 |
+
size 45839
|
hf.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoProcessor, DiaForConditionalGeneration
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
torch_device = "cuda"
|
| 5 |
+
model_checkpoint = "nari-labs/Dia-1.6B-0626"
|
| 6 |
+
|
| 7 |
+
text = [
|
| 8 |
+
"[S1] Dia is an open weights text to dialogue model. [S2] You get full control over scripts and voices. [S1] Wow. Amazing. (laughs) [S2] Try it now on Git hub or Hugging Face."
|
| 9 |
+
]
|
| 10 |
+
processor = AutoProcessor.from_pretrained(model_checkpoint)
|
| 11 |
+
inputs = processor(text=text, padding=True, return_tensors="pt").to(torch_device)
|
| 12 |
+
|
| 13 |
+
model = DiaForConditionalGeneration.from_pretrained(model_checkpoint).to(torch_device)
|
| 14 |
+
outputs = model.generate(**inputs, max_new_tokens=3072, guidance_scale=3.0, temperature=1.8, top_p=0.90, top_k=45)
|
| 15 |
+
|
| 16 |
+
outputs = processor.batch_decode(outputs)
|
| 17 |
+
processor.save_audio(outputs, "example.mp3")
|
pyproject.toml
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[project]
|
| 2 |
+
name = "nari-tts"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "Dia - A text-to-speech model for dialogue generation"
|
| 5 |
+
readme = "README.md"
|
| 6 |
+
requires-python = ">=3.10"
|
| 7 |
+
license = {file = "LICENSE"}
|
| 8 |
+
authors = [
|
| 9 |
+
{name = "Nari Labs", email = "contact@narilabs.ai"}
|
| 10 |
+
]
|
| 11 |
+
dependencies = [
|
| 12 |
+
"descript-audio-codec>=1.0.0",
|
| 13 |
+
"gradio>=5.25.2",
|
| 14 |
+
"huggingface-hub>=0.30.2",
|
| 15 |
+
"numpy>=2.2.4",
|
| 16 |
+
"pydantic>=2.11.3",
|
| 17 |
+
"safetensors>=0.5.3",
|
| 18 |
+
"soundfile>=0.13.1",
|
| 19 |
+
"torch==2.6.0",
|
| 20 |
+
"torchaudio==2.6.0",
|
| 21 |
+
"triton==3.2.0 ; sys_platform == 'linux'",
|
| 22 |
+
"triton-windows==3.2.0.post18 ; sys_platform == 'win32'",
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
[build-system]
|
| 26 |
+
requires = ["hatchling"]
|
| 27 |
+
build-backend = "hatchling.build"
|
| 28 |
+
|
| 29 |
+
[project.urls]
|
| 30 |
+
"Homepage" = "https://github.com/nari-labs/dia"
|
| 31 |
+
"Bug Tracker" = "https://github.com/nari-labs/dia/issues"
|
| 32 |
+
|
| 33 |
+
[tool.hatch.build.targets.wheel]
|
| 34 |
+
packages = ["dia"]
|
| 35 |
+
|
| 36 |
+
[tool.ruff]
|
| 37 |
+
# Never enforce `E501` (line length violations).
|
| 38 |
+
lint.ignore = ["C901", "E501", "E741", "W605"]
|
| 39 |
+
lint.select = ["C", "E", "F", "I", "W"]
|
| 40 |
+
line-length = 119
|
| 41 |
+
|
| 42 |
+
# Ignore import violations in all `__init__.py` files.
|
| 43 |
+
[tool.ruff.lint.per-file-ignores]
|
| 44 |
+
"__init__.py" = ["E402", "F401", "F403", "F811"]
|
| 45 |
+
|
| 46 |
+
[tool.ruff.lint.isort]
|
| 47 |
+
lines-after-imports = 2
|
| 48 |
+
|
| 49 |
+
[tool.uv.sources]
|
| 50 |
+
torch = [
|
| 51 |
+
{ index = "pytorch-cu126", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
|
| 52 |
+
]
|
| 53 |
+
torchaudio = [
|
| 54 |
+
{ index = "pytorch-cu126", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
[[tool.uv.index]]
|
| 58 |
+
name = "pytorch-cu126"
|
| 59 |
+
url = "https://download.pytorch.org/whl/cu126"
|
| 60 |
+
explicit = true
|
| 61 |
+
|
| 62 |
+
[dependency-groups]
|
| 63 |
+
dev = [
|
| 64 |
+
"ninja>=1.11.1.4",
|
| 65 |
+
"packaging>=25.0",
|
| 66 |
+
]
|
uv.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|