Spaces:
Sleeping
Sleeping
Commit
·
ce4167f
1
Parent(s):
9793cb6
Add requirements
Browse files- README.md +122 -14
- app.py +210 -0
- requirements.txt +9 -0
README.md
CHANGED
|
@@ -1,14 +1,122 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Neural Machine Translation for English-Hindi
|
| 2 |
+
|
| 3 |
+
This project implements a Neural Machine Translation system for English-Hindi translation using the MarianMT model fine-tuned on 100k split of Samanantar, with a user-friendly Gradio interface.
|
| 4 |
+
|
| 5 |
+

|
| 6 |
+
|
| 7 |
+
## Features
|
| 8 |
+
|
| 9 |
+
- Unidirectional translation between English and Hindi
|
| 10 |
+
- User-friendly web interface built with Gradio
|
| 11 |
+
- Example translations included
|
| 12 |
+
- Built on Helsinki-NLP's MarianMT model
|
| 13 |
+
|
| 14 |
+
## Installation
|
| 15 |
+
|
| 16 |
+
### Local Setup with Virtual Environment
|
| 17 |
+
|
| 18 |
+
1. Clone the repository:
|
| 19 |
+
```bash
|
| 20 |
+
git clone https://github.com/yourusername/NLPA_Assignment_2_Group_54.git
|
| 21 |
+
cd NLPA_Assignment_2_Group_54
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
2. Create and activate a virtual environment:
|
| 25 |
+
```bash
|
| 26 |
+
python -m venv venv
|
| 27 |
+
source venv/bin/activate # On Windows, use: venv\Scripts\activate
|
| 28 |
+
```
|
| 29 |
+
|
| 30 |
+
3. Install the required packages:
|
| 31 |
+
```bash
|
| 32 |
+
pip install -r requirements.txt
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
## Usage
|
| 36 |
+
|
| 37 |
+
1. Make sure your virtual environment is activated
|
| 38 |
+
2. Run the UI:
|
| 39 |
+
```bash
|
| 40 |
+
python nmt_ui.py
|
| 41 |
+
```
|
| 42 |
+
3. Open your browser and navigate to `http://localhost:7860`
|
| 43 |
+
|
| 44 |
+
## Supported Language Pairs
|
| 45 |
+
|
| 46 |
+
- English -> Hindi (using rooftopcoder/opus-mt-en-hi-samanantar-100k model)
|
| 47 |
+
|
| 48 |
+
## Training the Model
|
| 49 |
+
|
| 50 |
+
The `train.py` script is used to train the MarianMT model on the Samanantar dataset. The script performs the following steps:
|
| 51 |
+
- Loads the Samanantar dataset (English-Hindi subset).
|
| 52 |
+
- Splits the dataset into training and validation sets.
|
| 53 |
+
- Tokenizes the dataset.
|
| 54 |
+
- Sets up training arguments optimized for GPU.
|
| 55 |
+
- Trains the model using the Hugging Face `Trainer` class.
|
| 56 |
+
- Saves the trained model to the specified directory.
|
| 57 |
+
- Uploads the trained model to the Hugging Face Hub.
|
| 58 |
+
|
| 59 |
+
To train the model, run:
|
| 60 |
+
```bash
|
| 61 |
+
python train.py
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
## Testing the Model
|
| 65 |
+
|
| 66 |
+
The `model_test.py` script is used to test the trained MarianMT model. The script performs the following steps:
|
| 67 |
+
- Loads the trained model and tokenizer from the Hugging Face Hub.
|
| 68 |
+
- Translates a sample input text from English to Hindi.
|
| 69 |
+
- Prints the translated text.
|
| 70 |
+
|
| 71 |
+
To test the model, run:
|
| 72 |
+
```bash
|
| 73 |
+
python model_test.py
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
## User Interface
|
| 77 |
+
|
| 78 |
+
The `nmt_ui.py` script provides a Gradio-based user interface for translating text between English and Hindi. The interface includes options for transliteration of Romanized Hindi text to Devanagari script.
|
| 79 |
+
|
| 80 |
+
To launch the interface, run:
|
| 81 |
+
```bash
|
| 82 |
+
python nmt_ui.py
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
## Model Information
|
| 86 |
+
|
| 87 |
+
This project uses the MarianMT model from Hugging Face Transformers.
|
| 88 |
+
|
| 89 |
+
### Notes:
|
| 90 |
+
- The model supports English-Hindi translation.
|
| 91 |
+
- Based on the Helsinki-NLP/opus-mt-en-hi model.
|
| 92 |
+
- Optimized for English -> Hindi translation pairs.
|
| 93 |
+
- Includes transliteration support for Romanized Hindi text.
|
| 94 |
+
|
| 95 |
+
### Supported Features:
|
| 96 |
+
- English -> Hindi translation.
|
| 97 |
+
- Romanized Hindi -> Devanagari Hindi transliteration.
|
| 98 |
+
|
| 99 |
+
### Examples of Transliteration:
|
| 100 |
+
- "namaste" → "नमस्ते"
|
| 101 |
+
- "aap kaise ho" → "आप कैसे हो"
|
| 102 |
+
- "mera naam" → "मेरा नाम"
|
| 103 |
+
|
| 104 |
+
## Project Structure
|
| 105 |
+
|
| 106 |
+
```
|
| 107 |
+
NLPA_Assignment_2_Group_54/
|
| 108 |
+
├── nmt_ui.py # Main application file with Gradio interface
|
| 109 |
+
├── requirements.txt # Python dependencies
|
| 110 |
+
└── README.md # Project documentation
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
## License
|
| 114 |
+
|
| 115 |
+
MIT
|
| 116 |
+
|
| 117 |
+
## Group Members
|
| 118 |
+
|
| 119 |
+
- Shubhra J Gadhwala: 2023aa05750
|
| 120 |
+
- Sandeep Kumar Yadav: 2023ab05047
|
| 121 |
+
- Ravi Krishna Mayura: 2023ab05157
|
| 122 |
+
- Satheesh Kumar G: 2023ab05041
|
app.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from huggingface_hub import HfFolder
|
| 3 |
+
from transformers import MarianMTModel, MarianTokenizer
|
| 4 |
+
from indic_transliteration import sanscript
|
| 5 |
+
from indic_transliteration.sanscript import transliterate
|
| 6 |
+
import torch # Add this import at the top with other imports
|
| 7 |
+
|
| 8 |
+
# Global variables to store models and tokenizers
|
| 9 |
+
models = {}
|
| 10 |
+
tokenizers = {}
|
| 11 |
+
token = HfFolder.get_token()
|
| 12 |
+
|
| 13 |
+
# Model configurations
|
| 14 |
+
MODEL_CONFIGS = {
|
| 15 |
+
"en-hi": {
|
| 16 |
+
"model_path": "rooftopcoder/opus-mt-en-hi-samanantar-finetuned",
|
| 17 |
+
"name": "English to Hindi"
|
| 18 |
+
},
|
| 19 |
+
"hi-en": {
|
| 20 |
+
"model_path": "rooftopcoder/opus-mt-hi-en-samanantar-finetuned",
|
| 21 |
+
"name": "Hindi to English"
|
| 22 |
+
},
|
| 23 |
+
"en-mr": {
|
| 24 |
+
"model_path": "rooftopcoder/opus-mt-en-mr-samanantar-finetuned",
|
| 25 |
+
"name": "English to Marathi"
|
| 26 |
+
},
|
| 27 |
+
"mr-en": {
|
| 28 |
+
"model_path": "rooftopcoder/opus-mt-mr-en-samanantar-finetuned",
|
| 29 |
+
"name": "Marathi to English"
|
| 30 |
+
}
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
# Update language codes dictionary
|
| 34 |
+
language_codes = {
|
| 35 |
+
"English": "en",
|
| 36 |
+
"Hindi": "hi",
|
| 37 |
+
"Marathi": "mr"
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
# Reverse dictionary for display purposes
|
| 41 |
+
language_names = {v: k for k, v in language_codes.items()}
|
| 42 |
+
|
| 43 |
+
def load_models():
|
| 44 |
+
try:
|
| 45 |
+
print("Loading models from local storage...")
|
| 46 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 47 |
+
print(f"Using device: {device}")
|
| 48 |
+
|
| 49 |
+
for direction, config in MODEL_CONFIGS.items():
|
| 50 |
+
print(f"Loading {config['name']} model...")
|
| 51 |
+
tokenizers[direction] = MarianTokenizer.from_pretrained(config["model_path"], token=token)
|
| 52 |
+
models[direction] = MarianMTModel.from_pretrained(config["model_path"], token=token).to(device)
|
| 53 |
+
|
| 54 |
+
print("All models loaded successfully!")
|
| 55 |
+
return True
|
| 56 |
+
except Exception as e:
|
| 57 |
+
print(f"Error loading models: {e}")
|
| 58 |
+
return False
|
| 59 |
+
|
| 60 |
+
# Function to perform transliteration from English to Hindi
|
| 61 |
+
def transliterate_text(text, from_scheme=sanscript.ITRANS, to_scheme=sanscript.DEVANAGARI):
|
| 62 |
+
"""
|
| 63 |
+
Transliterates text from one script to another
|
| 64 |
+
Default is from ITRANS (Roman) to Devanagari (Hindi)
|
| 65 |
+
"""
|
| 66 |
+
try:
|
| 67 |
+
return transliterate(text, from_scheme, to_scheme)
|
| 68 |
+
except Exception as e:
|
| 69 |
+
print(f"Transliteration error: {e}")
|
| 70 |
+
return text
|
| 71 |
+
|
| 72 |
+
# Function to perform translation with MarianMT
|
| 73 |
+
def translate(input_text, source_lang, target_lang):
|
| 74 |
+
"""
|
| 75 |
+
Translates text using MarianMT models
|
| 76 |
+
"""
|
| 77 |
+
direction = f"{source_lang}-{target_lang}"
|
| 78 |
+
if direction not in models or direction not in tokenizers:
|
| 79 |
+
return "Error: Unsupported language pair"
|
| 80 |
+
|
| 81 |
+
if not input_text.strip():
|
| 82 |
+
return "Error: Please enter some text to translate."
|
| 83 |
+
|
| 84 |
+
try:
|
| 85 |
+
device = next(models[direction].parameters()).device
|
| 86 |
+
tokens = tokenizers[direction](input_text, return_tensors="pt", padding=True, truncation=True)
|
| 87 |
+
tokens = {k: v.to(device) for k, v in tokens.items()}
|
| 88 |
+
|
| 89 |
+
translated = models[direction].generate(**tokens)
|
| 90 |
+
translated = translated.cpu()
|
| 91 |
+
output = tokenizers[direction].batch_decode(translated, skip_special_tokens=True)
|
| 92 |
+
return output[0]
|
| 93 |
+
except Exception as e:
|
| 94 |
+
print(f"Translation error: {e}")
|
| 95 |
+
return f"Error during translation: {str(e)}"
|
| 96 |
+
|
| 97 |
+
# Helper function for handling the UI translation process
|
| 98 |
+
def perform_translation(input_text, source_lang, target_lang):
|
| 99 |
+
"""Wrapper function for the Gradio interface"""
|
| 100 |
+
source_code = language_codes[source_lang]
|
| 101 |
+
target_code = language_codes[target_lang]
|
| 102 |
+
|
| 103 |
+
# Handle transliteration for Hindi and Marathi
|
| 104 |
+
if source_code == "en" and target_code in ["hi", "mr"]:
|
| 105 |
+
common_indic_words = {
|
| 106 |
+
"hi": ["namaste", "dhanyavad", "kaise", "hai", "aap", "tum", "main"],
|
| 107 |
+
"mr": ["namaskar", "dhanyawad", "kase", "ahe", "tumhi", "mi"]
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
words = input_text.lower().split()
|
| 111 |
+
if any(word in common_indic_words.get(target_code, []) for word in words):
|
| 112 |
+
transliterated = transliterate_text(input_text)
|
| 113 |
+
if transliterated != input_text:
|
| 114 |
+
translation = translate(input_text, source_code, target_code)
|
| 115 |
+
return f"Transliterated: {transliterated}\n\nTranslated: {translation}"
|
| 116 |
+
|
| 117 |
+
return translate(input_text, source_code, target_code)
|
| 118 |
+
|
| 119 |
+
# Create Gradio interface
|
| 120 |
+
def create_interface():
|
| 121 |
+
with gr.Blocks(title="Neural Machine Translation - Indian Languages") as demo:
|
| 122 |
+
gr.Markdown("# Neural Machine Translation for Indian Languages")
|
| 123 |
+
gr.Markdown("Translate between English, Hindi, and Marathi using MarianMT models")
|
| 124 |
+
|
| 125 |
+
with gr.Row():
|
| 126 |
+
with gr.Column():
|
| 127 |
+
source_lang = gr.Dropdown(
|
| 128 |
+
choices=list(language_codes.keys()),
|
| 129 |
+
label="Source Language",
|
| 130 |
+
value="English"
|
| 131 |
+
)
|
| 132 |
+
input_text = gr.Textbox(
|
| 133 |
+
lines=5,
|
| 134 |
+
placeholder="Enter text to translate...",
|
| 135 |
+
label="Input Text"
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
with gr.Column():
|
| 139 |
+
target_lang = gr.Dropdown(
|
| 140 |
+
choices=list(language_codes.keys()),
|
| 141 |
+
label="Target Language",
|
| 142 |
+
value="Hindi"
|
| 143 |
+
)
|
| 144 |
+
output_text = gr.Textbox(
|
| 145 |
+
lines=5,
|
| 146 |
+
label="Translated Text",
|
| 147 |
+
placeholder="Translation will appear here..."
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
translate_btn = gr.Button("Translate", variant="primary")
|
| 151 |
+
transliterate_btn = gr.Button("Transliterate Only", variant="secondary")
|
| 152 |
+
|
| 153 |
+
# Event handlers
|
| 154 |
+
translate_btn.click(
|
| 155 |
+
fn=perform_translation,
|
| 156 |
+
inputs=[input_text, source_lang, target_lang],
|
| 157 |
+
outputs=[output_text],
|
| 158 |
+
api_name="translate"
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
# Direct transliteration handler (new)
|
| 162 |
+
def direct_transliterate(text):
|
| 163 |
+
if not text.strip():
|
| 164 |
+
return "Please enter text to transliterate"
|
| 165 |
+
return transliterate_text(text)
|
| 166 |
+
|
| 167 |
+
transliterate_btn.click(
|
| 168 |
+
fn=direct_transliterate,
|
| 169 |
+
inputs=[input_text],
|
| 170 |
+
outputs=[output_text],
|
| 171 |
+
api_name="transliterate"
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# Examples for all language pairs
|
| 175 |
+
gr.Examples(
|
| 176 |
+
examples=[
|
| 177 |
+
["Hello, how are you?", "English", "Hindi"],
|
| 178 |
+
["नमस्ते, आप कैसे हैं?", "Hindi", "English"],
|
| 179 |
+
["Hello, how are you?", "English", "Marathi"],
|
| 180 |
+
["नमस्कार, तुम्ही कसे आहात?", "Marathi", "English"],
|
| 181 |
+
],
|
| 182 |
+
inputs=[input_text, source_lang, target_lang],
|
| 183 |
+
fn=perform_translation,
|
| 184 |
+
outputs=output_text,
|
| 185 |
+
cache_examples=True
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
gr.Markdown("""
|
| 189 |
+
## Model Information
|
| 190 |
+
|
| 191 |
+
This demo uses fine-tuned MarianMT models for translation between:
|
| 192 |
+
- English ↔️ Hindi
|
| 193 |
+
- English ↔️ Marathi
|
| 194 |
+
|
| 195 |
+
### Features:
|
| 196 |
+
- Bidirectional translation support
|
| 197 |
+
- Transliteration support for romanized Indic text
|
| 198 |
+
- Optimized models for each language pair
|
| 199 |
+
""")
|
| 200 |
+
|
| 201 |
+
return demo
|
| 202 |
+
|
| 203 |
+
# Launch the interface
|
| 204 |
+
if __name__ == "__main__":
|
| 205 |
+
# Load all models before launching the interface
|
| 206 |
+
if load_models():
|
| 207 |
+
demo = create_interface()
|
| 208 |
+
demo.launch(share=False)
|
| 209 |
+
else:
|
| 210 |
+
print("Failed to load models. Please check the model paths and try again.")
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
transformers[sentencepiece]
|
| 3 |
+
torch
|
| 4 |
+
sacremoses
|
| 5 |
+
indic-transliteration
|
| 6 |
+
datasets
|
| 7 |
+
accelerate>=0.26.0
|
| 8 |
+
evaluate
|
| 9 |
+
sacrebleu
|