Spaces:
Running
Running
from time import gmtime, strftime | |
print(f'{strftime("%Y-%m-%d %H:%M:%S", gmtime())} Preparing for inference...') # noqa | |
from rudalle.pipelines import generate_images | |
from rudalle import get_rudalle_model, get_tokenizer, get_vae | |
from huggingface_hub import hf_hub_url, cached_download | |
import torch | |
from io import BytesIO | |
import base64 | |
print(f"GPUs available: {torch.cuda.device_count()}") | |
print(f"GPU[0] memory: {int(torch.cuda.get_device_properties(0).total_memory / 1048576)}Mib") | |
print(f"GPU[0] memory reserved: {int(torch.cuda.memory_reserved(0) / 1048576)}Mib") | |
print(f"GPU[0] memory allocated: {int(torch.cuda.memory_allocated(0) / 1048576)}Mib") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
fp16 = torch.cuda.is_available() | |
file_dir = "./models" | |
file_name = "pytorch_model.bin" | |
config_file_url = hf_hub_url(repo_id="minimaxir/ai-generated-pokemon-rudalle", filename=file_name) | |
cached_download(config_file_url, cache_dir=file_dir, force_filename=file_name) | |
model = get_rudalle_model('Malevich', pretrained=False, fp16=fp16, device=device) | |
model.load_state_dict(torch.load(f"{file_dir}/{file_name}", map_location=f"{'cuda:0' if torch.cuda.is_available() else 'cpu'}")) | |
vae = get_vae().to(device) | |
tokenizer = get_tokenizer() | |
print(f'{strftime("%Y-%m-%d %H:%M:%S", gmtime())} Ready for inference') | |
def english_to_russian(english_string): | |
word_map = { | |
"grass": "трава", | |
"fire": "Пожар", | |
"water": "вода", | |
"lightning": "молния", | |
"fighting": "борьба", | |
"psychic": "психический", | |
"colorless": "бесцветный", | |
"darkness": "темнота", | |
"metal": "металл", | |
"dragon": "Дракон", | |
"fairy": "сказочный" | |
} | |
return word_map[english_string.lower()] | |
def generate_image(prompt): | |
if prompt.lower() in ['grass', 'fire', 'water', 'lightning', 'fighting', 'psychic', 'colorless', 'darkness', | |
'metal', 'dragon', 'fairy']: | |
prompt = english_to_russian(prompt) | |
result, _ = generate_images(prompt, tokenizer, model, vae, top_k=2048, images_num=1, top_p=0.995) | |
buffer = BytesIO() | |
result[0].save(buffer, format="PNG") | |
base64_bytes = base64.b64encode(buffer.getvalue()) | |
base64_string = base64_bytes.decode("UTF-8") | |
return "data:image/png;base64," + base64_string | |