Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| from dataclasses import fields | |
| import torch | |
| from densepose.structures import DensePoseChartPredictorOutput, DensePoseTransformData | |
| def densepose_chart_predictor_output_hflip( | |
| densepose_predictor_output: DensePoseChartPredictorOutput, | |
| transform_data: DensePoseTransformData, | |
| ) -> DensePoseChartPredictorOutput: | |
| """ | |
| Change to take into account a Horizontal flip. | |
| """ | |
| if len(densepose_predictor_output) > 0: | |
| PredictorOutput = type(densepose_predictor_output) | |
| output_dict = {} | |
| for field in fields(densepose_predictor_output): | |
| field_value = getattr(densepose_predictor_output, field.name) | |
| # flip tensors | |
| if isinstance(field_value, torch.Tensor): | |
| setattr(densepose_predictor_output, field.name, torch.flip(field_value, [3])) | |
| densepose_predictor_output = _flip_iuv_semantics_tensor( | |
| densepose_predictor_output, transform_data | |
| ) | |
| densepose_predictor_output = _flip_segm_semantics_tensor( | |
| densepose_predictor_output, transform_data | |
| ) | |
| for field in fields(densepose_predictor_output): | |
| output_dict[field.name] = getattr(densepose_predictor_output, field.name) | |
| return PredictorOutput(**output_dict) | |
| else: | |
| return densepose_predictor_output | |
| def _flip_iuv_semantics_tensor( | |
| densepose_predictor_output: DensePoseChartPredictorOutput, | |
| dp_transform_data: DensePoseTransformData, | |
| ) -> DensePoseChartPredictorOutput: | |
| point_label_symmetries = dp_transform_data.point_label_symmetries | |
| uv_symmetries = dp_transform_data.uv_symmetries | |
| N, C, H, W = densepose_predictor_output.u.shape | |
| u_loc = (densepose_predictor_output.u[:, 1:, :, :].clamp(0, 1) * 255).long() | |
| v_loc = (densepose_predictor_output.v[:, 1:, :, :].clamp(0, 1) * 255).long() | |
| Iindex = torch.arange(C - 1, device=densepose_predictor_output.u.device)[ | |
| None, :, None, None | |
| ].expand(N, C - 1, H, W) | |
| densepose_predictor_output.u[:, 1:, :, :] = uv_symmetries["U_transforms"][Iindex, v_loc, u_loc] | |
| densepose_predictor_output.v[:, 1:, :, :] = uv_symmetries["V_transforms"][Iindex, v_loc, u_loc] | |
| for el in ["fine_segm", "u", "v"]: | |
| densepose_predictor_output.__dict__[el] = densepose_predictor_output.__dict__[el][ | |
| :, point_label_symmetries, :, : | |
| ] | |
| return densepose_predictor_output | |
| def _flip_segm_semantics_tensor( | |
| densepose_predictor_output: DensePoseChartPredictorOutput, dp_transform_data | |
| ): | |
| if densepose_predictor_output.coarse_segm.shape[1] > 2: | |
| densepose_predictor_output.coarse_segm = densepose_predictor_output.coarse_segm[ | |
| :, dp_transform_data.mask_label_symmetries, :, : | |
| ] | |
| return densepose_predictor_output | |