romnatall
deploy
26290c2
raw
history blame
1.66 kB
import streamlit as st
from PIL import Image
st.title("NLP project")
description_show_options = ['main','film_review','toxic_messages','GPT','над проектом работали']
description_show = st.sidebar.radio("Description", description_show_options)
if description_show == 'над проектом работали':
st.title(" над проектом работали")
col1, col2, col3 = st.columns(3)
with col1:
romaimage = Image.open("images/roma.jpg")
st.image(romaimage, caption="Рома | cosplayNet enjoyer | DevOps", use_column_width=True)
with col2:
leraimage = Image.open("images/Lera.png")
st.image(leraimage, caption="Лера | UNet bender | Data Scientist", use_column_width=True)
with col3:
olyaimage = Image.open("images/olya.jpg")
st.image(olyaimage, caption="Бауржан | streamlit master | Frontender", use_column_width=True)
elif description_show == 'GPT':
st.title("GPT")
elif description_show == 'main':
st.title("main")
elif description_show == 'film_review':
st.title("film_review")
# Weighted F1-score: 0.7069352925929284
# Classification Report:
# precision recall f1-score support
# Bad 0.67 0.81 0.74 960
# Neutral 0.65 0.50 0.56 922
# Good 0.82 0.82 0.82 896
# accuracy 0.71 2778
# macro avg 0.71 0.71 0.71 2778
# weighted avg 0.71 0.71 0.71 2778
elif description_show == 'toxic_messages':
st.title("toxic_messages")