Gregniuki commited on
Commit
0ef4a15
·
verified ·
1 Parent(s): 193f51d

Delete f5-tts

Browse files
Files changed (2) hide show
  1. f5-tts/api.py +0 -151
  2. f5-tts/socket.py +0 -159
f5-tts/api.py DELETED
@@ -1,151 +0,0 @@
1
- import random
2
- import sys
3
- from importlib.resources import files
4
-
5
- import soundfile as sf
6
- import torch
7
- import tqdm
8
- from cached_path import cached_path
9
-
10
- from f5_tts.infer.utils_infer import (
11
- hop_length,
12
- infer_process,
13
- load_model,
14
- load_vocoder,
15
- preprocess_ref_audio_text,
16
- remove_silence_for_generated_wav,
17
- save_spectrogram,
18
- target_sample_rate,
19
- )
20
- from f5_tts.model import DiT, UNetT
21
- from f5_tts.model.utils import seed_everything
22
-
23
-
24
- class F5TTS:
25
- def __init__(
26
- self,
27
- model_type="F5-TTS",
28
- ckpt_file="",
29
- vocab_file="",
30
- ode_method="euler",
31
- use_ema=True,
32
- vocoder_name="vocos",
33
- local_path=None,
34
- device=None,
35
- ):
36
- # Initialize parameters
37
- self.final_wave = None
38
- self.target_sample_rate = target_sample_rate
39
- self.hop_length = hop_length
40
- self.seed = -1
41
- self.mel_spec_type = vocoder_name
42
-
43
- # Set device
44
- self.device = device or (
45
- "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
46
- )
47
-
48
- # Load models
49
- self.load_vocoder_model(vocoder_name, local_path)
50
- self.load_ema_model(model_type, ckpt_file, vocoder_name, vocab_file, ode_method, use_ema)
51
-
52
- def load_vocoder_model(self, vocoder_name, local_path):
53
- self.vocoder = load_vocoder(vocoder_name, local_path is not None, local_path, self.device)
54
-
55
- def load_ema_model(self, model_type, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema):
56
- if model_type == "F5-TTS":
57
- if not ckpt_file:
58
- if mel_spec_type == "vocos":
59
- ckpt_file = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))
60
- elif mel_spec_type == "bigvgan":
61
- ckpt_file = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base_bigvgan/model_1250000.pt"))
62
- model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
63
- model_cls = DiT
64
- elif model_type == "E2-TTS":
65
- if not ckpt_file:
66
- ckpt_file = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))
67
- model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
68
- model_cls = UNetT
69
- else:
70
- raise ValueError(f"Unknown model type: {model_type}")
71
-
72
- self.ema_model = load_model(
73
- model_cls, model_cfg, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, self.device
74
- )
75
-
76
- def export_wav(self, wav, file_wave, remove_silence=False):
77
- sf.write(file_wave, wav, self.target_sample_rate)
78
-
79
- if remove_silence:
80
- remove_silence_for_generated_wav(file_wave)
81
-
82
- def export_spectrogram(self, spect, file_spect):
83
- save_spectrogram(spect, file_spect)
84
-
85
- def infer(
86
- self,
87
- ref_file,
88
- ref_text,
89
- gen_text,
90
- show_info=print,
91
- progress=tqdm,
92
- target_rms=0.1,
93
- cross_fade_duration=0.15,
94
- sway_sampling_coef=-1,
95
- cfg_strength=2,
96
- nfe_step=32,
97
- speed=1.0,
98
- fix_duration=None,
99
- remove_silence=False,
100
- file_wave=None,
101
- file_spect=None,
102
- seed=-1,
103
- ):
104
- if seed == -1:
105
- seed = random.randint(0, sys.maxsize)
106
- seed_everything(seed)
107
- self.seed = seed
108
-
109
- ref_file, ref_text = preprocess_ref_audio_text(ref_file, ref_text, device=self.device)
110
-
111
- wav, sr, spect = infer_process(
112
- ref_file,
113
- ref_text,
114
- gen_text,
115
- self.ema_model,
116
- self.vocoder,
117
- self.mel_spec_type,
118
- show_info=show_info,
119
- progress=progress,
120
- target_rms=target_rms,
121
- cross_fade_duration=cross_fade_duration,
122
- nfe_step=nfe_step,
123
- cfg_strength=cfg_strength,
124
- sway_sampling_coef=sway_sampling_coef,
125
- speed=speed,
126
- fix_duration=fix_duration,
127
- device=self.device,
128
- )
129
-
130
- if file_wave is not None:
131
- self.export_wav(wav, file_wave, remove_silence)
132
-
133
- if file_spect is not None:
134
- self.export_spectrogram(spect, file_spect)
135
-
136
- return wav, sr, spect
137
-
138
-
139
- if __name__ == "__main__":
140
- f5tts = F5TTS()
141
-
142
- wav, sr, spect = f5tts.infer(
143
- ref_file=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")),
144
- ref_text="some call me nature, others call me mother nature.",
145
- gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
146
- file_wave=str(files("f5_tts").joinpath("../../tests/api_out.wav")),
147
- file_spect=str(files("f5_tts").joinpath("../../tests/api_out.png")),
148
- seed=-1, # random seed = -1
149
- )
150
-
151
- print("seed :", f5tts.seed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5-tts/socket.py DELETED
@@ -1,159 +0,0 @@
1
- import socket
2
- import struct
3
- import torch
4
- import torchaudio
5
- from threading import Thread
6
-
7
-
8
- import gc
9
- import traceback
10
-
11
-
12
- from infer.utils_infer import infer_batch_process, preprocess_ref_audio_text, load_vocoder, load_model
13
- from model.backbones.dit import DiT
14
-
15
-
16
- class TTSStreamingProcessor:
17
- def __init__(self, ckpt_file, vocab_file, ref_audio, ref_text, device=None, dtype=torch.float32):
18
- self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
19
-
20
- # Load the model using the provided checkpoint and vocab files
21
- self.model = load_model(
22
- DiT,
23
- dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
24
- ckpt_file,
25
- vocab_file,
26
- ).to(self.device, dtype=dtype)
27
-
28
- # Load the vocoder
29
- self.vocoder = load_vocoder(is_local=False)
30
-
31
- # Set sampling rate for streaming
32
- self.sampling_rate = 24000 # Consistency with client
33
-
34
- # Set reference audio and text
35
- self.ref_audio = ref_audio
36
- self.ref_text = ref_text
37
-
38
- # Warm up the model
39
- self._warm_up()
40
-
41
- def _warm_up(self):
42
- """Warm up the model with a dummy input to ensure it's ready for real-time processing."""
43
- print("Warming up the model...")
44
- ref_audio, ref_text = preprocess_ref_audio_text(self.ref_audio, self.ref_text)
45
- audio, sr = torchaudio.load(ref_audio)
46
- gen_text = "Warm-up text for the model."
47
-
48
- # Pass the vocoder as an argument here
49
- infer_batch_process((audio, sr), ref_text, [gen_text], self.model, self.vocoder, device=self.device)
50
- print("Warm-up completed.")
51
-
52
- def generate_stream(self, text, play_steps_in_s=0.5):
53
- """Generate audio in chunks and yield them in real-time."""
54
- # Preprocess the reference audio and text
55
- ref_audio, ref_text = preprocess_ref_audio_text(self.ref_audio, self.ref_text)
56
-
57
- # Load reference audio
58
- audio, sr = torchaudio.load(ref_audio)
59
-
60
- # Run inference for the input text
61
- audio_chunk, final_sample_rate, _ = infer_batch_process(
62
- (audio, sr),
63
- ref_text,
64
- [text],
65
- self.model,
66
- self.vocoder,
67
- device=self.device, # Pass vocoder here
68
- )
69
-
70
- # Break the generated audio into chunks and send them
71
- chunk_size = int(final_sample_rate * play_steps_in_s)
72
-
73
- for i in range(0, len(audio_chunk), chunk_size):
74
- chunk = audio_chunk[i : i + chunk_size]
75
-
76
- # Check if it's the final chunk
77
- if i + chunk_size >= len(audio_chunk):
78
- chunk = audio_chunk[i:]
79
-
80
- # Avoid sending empty or repeated chunks
81
- if len(chunk) == 0:
82
- break
83
-
84
- # Pack and send the audio chunk
85
- packed_audio = struct.pack(f"{len(chunk)}f", *chunk)
86
- yield packed_audio
87
-
88
- # Ensure that no final word is repeated by not resending partial chunks
89
- if len(audio_chunk) % chunk_size != 0:
90
- remaining_chunk = audio_chunk[-(len(audio_chunk) % chunk_size) :]
91
- packed_audio = struct.pack(f"{len(remaining_chunk)}f", *remaining_chunk)
92
- yield packed_audio
93
-
94
-
95
- def handle_client(client_socket, processor):
96
- try:
97
- while True:
98
- # Receive data from the client
99
- data = client_socket.recv(1024).decode("utf-8")
100
- if not data:
101
- break
102
-
103
- try:
104
- # The client sends the text input
105
- text = data.strip()
106
-
107
- # Generate and stream audio chunks
108
- for audio_chunk in processor.generate_stream(text):
109
- client_socket.sendall(audio_chunk)
110
-
111
- # Send end-of-audio signal
112
- client_socket.sendall(b"END_OF_AUDIO")
113
-
114
- except Exception as inner_e:
115
- print(f"Error during processing: {inner_e}")
116
- traceback.print_exc() # Print the full traceback to diagnose the issue
117
- break
118
-
119
- except Exception as e:
120
- print(f"Error handling client: {e}")
121
- traceback.print_exc()
122
- finally:
123
- client_socket.close()
124
-
125
-
126
- def start_server(host, port, processor):
127
- server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
128
- server.bind((host, port))
129
- server.listen(5)
130
- print(f"Server listening on {host}:{port}")
131
-
132
- while True:
133
- client_socket, addr = server.accept()
134
- print(f"Accepted connection from {addr}")
135
- client_handler = Thread(target=handle_client, args=(client_socket, processor))
136
- client_handler.start()
137
-
138
-
139
- if __name__ == "__main__":
140
- try:
141
- # Load the model and vocoder using the provided files
142
- ckpt_file = "" # pointing your checkpoint "ckpts/model/model_1096.pt"
143
- vocab_file = "" # Add vocab file path if needed
144
- ref_audio = "" # add ref audio"./tests/ref_audio/reference.wav"
145
- ref_text = ""
146
-
147
- # Initialize the processor with the model and vocoder
148
- processor = TTSStreamingProcessor(
149
- ckpt_file=ckpt_file,
150
- vocab_file=vocab_file,
151
- ref_audio=ref_audio,
152
- ref_text=ref_text,
153
- dtype=torch.float32,
154
- )
155
-
156
- # Start the server
157
- start_server("0.0.0.0", 9998, processor)
158
- except KeyboardInterrupt:
159
- gc.collect()