Spaces:
Sleeping
Sleeping
Delete f5-tts
Browse files- f5-tts/api.py +0 -151
- f5-tts/socket.py +0 -159
f5-tts/api.py
DELETED
|
@@ -1,151 +0,0 @@
|
|
| 1 |
-
import random
|
| 2 |
-
import sys
|
| 3 |
-
from importlib.resources import files
|
| 4 |
-
|
| 5 |
-
import soundfile as sf
|
| 6 |
-
import torch
|
| 7 |
-
import tqdm
|
| 8 |
-
from cached_path import cached_path
|
| 9 |
-
|
| 10 |
-
from f5_tts.infer.utils_infer import (
|
| 11 |
-
hop_length,
|
| 12 |
-
infer_process,
|
| 13 |
-
load_model,
|
| 14 |
-
load_vocoder,
|
| 15 |
-
preprocess_ref_audio_text,
|
| 16 |
-
remove_silence_for_generated_wav,
|
| 17 |
-
save_spectrogram,
|
| 18 |
-
target_sample_rate,
|
| 19 |
-
)
|
| 20 |
-
from f5_tts.model import DiT, UNetT
|
| 21 |
-
from f5_tts.model.utils import seed_everything
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
class F5TTS:
|
| 25 |
-
def __init__(
|
| 26 |
-
self,
|
| 27 |
-
model_type="F5-TTS",
|
| 28 |
-
ckpt_file="",
|
| 29 |
-
vocab_file="",
|
| 30 |
-
ode_method="euler",
|
| 31 |
-
use_ema=True,
|
| 32 |
-
vocoder_name="vocos",
|
| 33 |
-
local_path=None,
|
| 34 |
-
device=None,
|
| 35 |
-
):
|
| 36 |
-
# Initialize parameters
|
| 37 |
-
self.final_wave = None
|
| 38 |
-
self.target_sample_rate = target_sample_rate
|
| 39 |
-
self.hop_length = hop_length
|
| 40 |
-
self.seed = -1
|
| 41 |
-
self.mel_spec_type = vocoder_name
|
| 42 |
-
|
| 43 |
-
# Set device
|
| 44 |
-
self.device = device or (
|
| 45 |
-
"cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
-
# Load models
|
| 49 |
-
self.load_vocoder_model(vocoder_name, local_path)
|
| 50 |
-
self.load_ema_model(model_type, ckpt_file, vocoder_name, vocab_file, ode_method, use_ema)
|
| 51 |
-
|
| 52 |
-
def load_vocoder_model(self, vocoder_name, local_path):
|
| 53 |
-
self.vocoder = load_vocoder(vocoder_name, local_path is not None, local_path, self.device)
|
| 54 |
-
|
| 55 |
-
def load_ema_model(self, model_type, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema):
|
| 56 |
-
if model_type == "F5-TTS":
|
| 57 |
-
if not ckpt_file:
|
| 58 |
-
if mel_spec_type == "vocos":
|
| 59 |
-
ckpt_file = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))
|
| 60 |
-
elif mel_spec_type == "bigvgan":
|
| 61 |
-
ckpt_file = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base_bigvgan/model_1250000.pt"))
|
| 62 |
-
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
| 63 |
-
model_cls = DiT
|
| 64 |
-
elif model_type == "E2-TTS":
|
| 65 |
-
if not ckpt_file:
|
| 66 |
-
ckpt_file = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))
|
| 67 |
-
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
| 68 |
-
model_cls = UNetT
|
| 69 |
-
else:
|
| 70 |
-
raise ValueError(f"Unknown model type: {model_type}")
|
| 71 |
-
|
| 72 |
-
self.ema_model = load_model(
|
| 73 |
-
model_cls, model_cfg, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, self.device
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
def export_wav(self, wav, file_wave, remove_silence=False):
|
| 77 |
-
sf.write(file_wave, wav, self.target_sample_rate)
|
| 78 |
-
|
| 79 |
-
if remove_silence:
|
| 80 |
-
remove_silence_for_generated_wav(file_wave)
|
| 81 |
-
|
| 82 |
-
def export_spectrogram(self, spect, file_spect):
|
| 83 |
-
save_spectrogram(spect, file_spect)
|
| 84 |
-
|
| 85 |
-
def infer(
|
| 86 |
-
self,
|
| 87 |
-
ref_file,
|
| 88 |
-
ref_text,
|
| 89 |
-
gen_text,
|
| 90 |
-
show_info=print,
|
| 91 |
-
progress=tqdm,
|
| 92 |
-
target_rms=0.1,
|
| 93 |
-
cross_fade_duration=0.15,
|
| 94 |
-
sway_sampling_coef=-1,
|
| 95 |
-
cfg_strength=2,
|
| 96 |
-
nfe_step=32,
|
| 97 |
-
speed=1.0,
|
| 98 |
-
fix_duration=None,
|
| 99 |
-
remove_silence=False,
|
| 100 |
-
file_wave=None,
|
| 101 |
-
file_spect=None,
|
| 102 |
-
seed=-1,
|
| 103 |
-
):
|
| 104 |
-
if seed == -1:
|
| 105 |
-
seed = random.randint(0, sys.maxsize)
|
| 106 |
-
seed_everything(seed)
|
| 107 |
-
self.seed = seed
|
| 108 |
-
|
| 109 |
-
ref_file, ref_text = preprocess_ref_audio_text(ref_file, ref_text, device=self.device)
|
| 110 |
-
|
| 111 |
-
wav, sr, spect = infer_process(
|
| 112 |
-
ref_file,
|
| 113 |
-
ref_text,
|
| 114 |
-
gen_text,
|
| 115 |
-
self.ema_model,
|
| 116 |
-
self.vocoder,
|
| 117 |
-
self.mel_spec_type,
|
| 118 |
-
show_info=show_info,
|
| 119 |
-
progress=progress,
|
| 120 |
-
target_rms=target_rms,
|
| 121 |
-
cross_fade_duration=cross_fade_duration,
|
| 122 |
-
nfe_step=nfe_step,
|
| 123 |
-
cfg_strength=cfg_strength,
|
| 124 |
-
sway_sampling_coef=sway_sampling_coef,
|
| 125 |
-
speed=speed,
|
| 126 |
-
fix_duration=fix_duration,
|
| 127 |
-
device=self.device,
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
if file_wave is not None:
|
| 131 |
-
self.export_wav(wav, file_wave, remove_silence)
|
| 132 |
-
|
| 133 |
-
if file_spect is not None:
|
| 134 |
-
self.export_spectrogram(spect, file_spect)
|
| 135 |
-
|
| 136 |
-
return wav, sr, spect
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
if __name__ == "__main__":
|
| 140 |
-
f5tts = F5TTS()
|
| 141 |
-
|
| 142 |
-
wav, sr, spect = f5tts.infer(
|
| 143 |
-
ref_file=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")),
|
| 144 |
-
ref_text="some call me nature, others call me mother nature.",
|
| 145 |
-
gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
|
| 146 |
-
file_wave=str(files("f5_tts").joinpath("../../tests/api_out.wav")),
|
| 147 |
-
file_spect=str(files("f5_tts").joinpath("../../tests/api_out.png")),
|
| 148 |
-
seed=-1, # random seed = -1
|
| 149 |
-
)
|
| 150 |
-
|
| 151 |
-
print("seed :", f5tts.seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f5-tts/socket.py
DELETED
|
@@ -1,159 +0,0 @@
|
|
| 1 |
-
import socket
|
| 2 |
-
import struct
|
| 3 |
-
import torch
|
| 4 |
-
import torchaudio
|
| 5 |
-
from threading import Thread
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
import gc
|
| 9 |
-
import traceback
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
from infer.utils_infer import infer_batch_process, preprocess_ref_audio_text, load_vocoder, load_model
|
| 13 |
-
from model.backbones.dit import DiT
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
class TTSStreamingProcessor:
|
| 17 |
-
def __init__(self, ckpt_file, vocab_file, ref_audio, ref_text, device=None, dtype=torch.float32):
|
| 18 |
-
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
-
|
| 20 |
-
# Load the model using the provided checkpoint and vocab files
|
| 21 |
-
self.model = load_model(
|
| 22 |
-
DiT,
|
| 23 |
-
dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
|
| 24 |
-
ckpt_file,
|
| 25 |
-
vocab_file,
|
| 26 |
-
).to(self.device, dtype=dtype)
|
| 27 |
-
|
| 28 |
-
# Load the vocoder
|
| 29 |
-
self.vocoder = load_vocoder(is_local=False)
|
| 30 |
-
|
| 31 |
-
# Set sampling rate for streaming
|
| 32 |
-
self.sampling_rate = 24000 # Consistency with client
|
| 33 |
-
|
| 34 |
-
# Set reference audio and text
|
| 35 |
-
self.ref_audio = ref_audio
|
| 36 |
-
self.ref_text = ref_text
|
| 37 |
-
|
| 38 |
-
# Warm up the model
|
| 39 |
-
self._warm_up()
|
| 40 |
-
|
| 41 |
-
def _warm_up(self):
|
| 42 |
-
"""Warm up the model with a dummy input to ensure it's ready for real-time processing."""
|
| 43 |
-
print("Warming up the model...")
|
| 44 |
-
ref_audio, ref_text = preprocess_ref_audio_text(self.ref_audio, self.ref_text)
|
| 45 |
-
audio, sr = torchaudio.load(ref_audio)
|
| 46 |
-
gen_text = "Warm-up text for the model."
|
| 47 |
-
|
| 48 |
-
# Pass the vocoder as an argument here
|
| 49 |
-
infer_batch_process((audio, sr), ref_text, [gen_text], self.model, self.vocoder, device=self.device)
|
| 50 |
-
print("Warm-up completed.")
|
| 51 |
-
|
| 52 |
-
def generate_stream(self, text, play_steps_in_s=0.5):
|
| 53 |
-
"""Generate audio in chunks and yield them in real-time."""
|
| 54 |
-
# Preprocess the reference audio and text
|
| 55 |
-
ref_audio, ref_text = preprocess_ref_audio_text(self.ref_audio, self.ref_text)
|
| 56 |
-
|
| 57 |
-
# Load reference audio
|
| 58 |
-
audio, sr = torchaudio.load(ref_audio)
|
| 59 |
-
|
| 60 |
-
# Run inference for the input text
|
| 61 |
-
audio_chunk, final_sample_rate, _ = infer_batch_process(
|
| 62 |
-
(audio, sr),
|
| 63 |
-
ref_text,
|
| 64 |
-
[text],
|
| 65 |
-
self.model,
|
| 66 |
-
self.vocoder,
|
| 67 |
-
device=self.device, # Pass vocoder here
|
| 68 |
-
)
|
| 69 |
-
|
| 70 |
-
# Break the generated audio into chunks and send them
|
| 71 |
-
chunk_size = int(final_sample_rate * play_steps_in_s)
|
| 72 |
-
|
| 73 |
-
for i in range(0, len(audio_chunk), chunk_size):
|
| 74 |
-
chunk = audio_chunk[i : i + chunk_size]
|
| 75 |
-
|
| 76 |
-
# Check if it's the final chunk
|
| 77 |
-
if i + chunk_size >= len(audio_chunk):
|
| 78 |
-
chunk = audio_chunk[i:]
|
| 79 |
-
|
| 80 |
-
# Avoid sending empty or repeated chunks
|
| 81 |
-
if len(chunk) == 0:
|
| 82 |
-
break
|
| 83 |
-
|
| 84 |
-
# Pack and send the audio chunk
|
| 85 |
-
packed_audio = struct.pack(f"{len(chunk)}f", *chunk)
|
| 86 |
-
yield packed_audio
|
| 87 |
-
|
| 88 |
-
# Ensure that no final word is repeated by not resending partial chunks
|
| 89 |
-
if len(audio_chunk) % chunk_size != 0:
|
| 90 |
-
remaining_chunk = audio_chunk[-(len(audio_chunk) % chunk_size) :]
|
| 91 |
-
packed_audio = struct.pack(f"{len(remaining_chunk)}f", *remaining_chunk)
|
| 92 |
-
yield packed_audio
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
def handle_client(client_socket, processor):
|
| 96 |
-
try:
|
| 97 |
-
while True:
|
| 98 |
-
# Receive data from the client
|
| 99 |
-
data = client_socket.recv(1024).decode("utf-8")
|
| 100 |
-
if not data:
|
| 101 |
-
break
|
| 102 |
-
|
| 103 |
-
try:
|
| 104 |
-
# The client sends the text input
|
| 105 |
-
text = data.strip()
|
| 106 |
-
|
| 107 |
-
# Generate and stream audio chunks
|
| 108 |
-
for audio_chunk in processor.generate_stream(text):
|
| 109 |
-
client_socket.sendall(audio_chunk)
|
| 110 |
-
|
| 111 |
-
# Send end-of-audio signal
|
| 112 |
-
client_socket.sendall(b"END_OF_AUDIO")
|
| 113 |
-
|
| 114 |
-
except Exception as inner_e:
|
| 115 |
-
print(f"Error during processing: {inner_e}")
|
| 116 |
-
traceback.print_exc() # Print the full traceback to diagnose the issue
|
| 117 |
-
break
|
| 118 |
-
|
| 119 |
-
except Exception as e:
|
| 120 |
-
print(f"Error handling client: {e}")
|
| 121 |
-
traceback.print_exc()
|
| 122 |
-
finally:
|
| 123 |
-
client_socket.close()
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
def start_server(host, port, processor):
|
| 127 |
-
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
| 128 |
-
server.bind((host, port))
|
| 129 |
-
server.listen(5)
|
| 130 |
-
print(f"Server listening on {host}:{port}")
|
| 131 |
-
|
| 132 |
-
while True:
|
| 133 |
-
client_socket, addr = server.accept()
|
| 134 |
-
print(f"Accepted connection from {addr}")
|
| 135 |
-
client_handler = Thread(target=handle_client, args=(client_socket, processor))
|
| 136 |
-
client_handler.start()
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
if __name__ == "__main__":
|
| 140 |
-
try:
|
| 141 |
-
# Load the model and vocoder using the provided files
|
| 142 |
-
ckpt_file = "" # pointing your checkpoint "ckpts/model/model_1096.pt"
|
| 143 |
-
vocab_file = "" # Add vocab file path if needed
|
| 144 |
-
ref_audio = "" # add ref audio"./tests/ref_audio/reference.wav"
|
| 145 |
-
ref_text = ""
|
| 146 |
-
|
| 147 |
-
# Initialize the processor with the model and vocoder
|
| 148 |
-
processor = TTSStreamingProcessor(
|
| 149 |
-
ckpt_file=ckpt_file,
|
| 150 |
-
vocab_file=vocab_file,
|
| 151 |
-
ref_audio=ref_audio,
|
| 152 |
-
ref_text=ref_text,
|
| 153 |
-
dtype=torch.float32,
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
-
# Start the server
|
| 157 |
-
start_server("0.0.0.0", 9998, processor)
|
| 158 |
-
except KeyboardInterrupt:
|
| 159 |
-
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|