asr / app.py
roman
2nd
09ec1f1
raw
history blame
2.8 kB
import gradio as gr
import numpy as np
import librosa
import torch
from math import ceil
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.EncDecCTCModelBPE. \
from_pretrained("theodotus/stt_uk_squeezeformer_ctc_sm",map_location="cpu")
asr_model.preprocessor.featurizer.dither = 0.0
asr_model.preprocessor.featurizer.pad_to = 0
asr_model.eval()
asr_model.encoder.freeze()
asr_model.decoder.freeze()
buffer_len = 3.2
chunk_len = 0.8
total_buffer = round(buffer_len * asr_model.cfg.sample_rate)
overhead_len = round((buffer_len - chunk_len) * asr_model.cfg.sample_rate)
model_stride = 4
model_stride_in_secs = asr_model.cfg.preprocessor.window_stride * model_stride
tokens_per_chunk = ceil(chunk_len / model_stride_in_secs)
mid_delay = ceil((chunk_len + (buffer_len - chunk_len) / 2) / model_stride_in_secs)
def resample(audio):
audio_16k, sr = librosa.load(audio, sr = asr_model.cfg["sample_rate"],
mono=True, res_type='soxr_hq')
return audio_16k
def model(audio_16k):
logits, logits_len, greedy_predictions = asr_model.forward(
input_signal=torch.tensor([audio_16k]),
input_signal_length=torch.tensor([len(audio_16k)])
)
return logits
def decode_predictions(logits_list):
logits_len = logits_list[0].shape[1]
# cut overhead
cutted_logits = []
for idx in range(len(logits_list)):
start_cut = 0 if (idx==0) else logits_len - 1 - mid_delay
end_cut = -1 if (idx==len(logits_list)-1) else logits_len - 1 - mid_delay + tokens_per_chunk
logits = logits_list[idx][:, start_cut:end_cut]
cutted_logits.append(logits)
# join
logits = torch.cat(cutted_logits, axis=1)
logits_len = torch.tensor([logits.shape[1]])
current_hypotheses, all_hyp = asr_model.decoding.ctc_decoder_predictions_tensor(
logits, decoder_lengths=logits_len, return_hypotheses=False,
)
return current_hypotheses[0]
def transcribe(audio, state):
if state is None:
state = [np.array([], dtype=np.float32), []]
audio_16k = resample(audio)
# join to audio sequence
state[0] = np.concatenate([state[0], audio_16k])
while (len(state[0]) > total_buffer):
buffer = state[0][:total_buffer]
state[0] = state[0][total_buffer - overhead_len:]
# run model
logits = model(buffer)
# add logits
state[1].append(logits)
if len(state[1]) == 0:
text = ""
else:
text = decode_predictions(state[1])
return text, state
gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(source="microphone", type="filepath", streaming=True),
gr.State(None)
],
outputs=[
"textbox",
"state"
],
live=True).launch()