Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,76 @@
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from pydantic import BaseModel
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
app = FastAPI()
|
| 5 |
|
|
|
|
| 6 |
@app.get("/")
|
| 7 |
def home():
|
| 8 |
-
return {"message": "✅ Essay Grading API is running
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
class GradeInput(BaseModel):
|
| 11 |
question: str
|
| 12 |
model_answer: str
|
| 13 |
student_answer: str
|
| 14 |
|
|
|
|
| 15 |
@app.post("/evaluate")
|
| 16 |
def evaluate_answer(data: GradeInput):
|
| 17 |
-
|
| 18 |
-
"
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from pydantic import BaseModel
|
| 3 |
+
import requests
|
| 4 |
+
import os
|
| 5 |
+
import re
|
| 6 |
|
| 7 |
app = FastAPI()
|
| 8 |
|
| 9 |
+
# ✅ رسالة ترحيب للتأكد إن السيرفر شغال
|
| 10 |
@app.get("/")
|
| 11 |
def home():
|
| 12 |
+
return {"message": "✅ Essay Grading API using Bloomz-560m is running!"}
|
| 13 |
|
| 14 |
+
# ✅ جلب Hugging Face API Token من المتغيرات البيئية
|
| 15 |
+
HF_API_KEY = os.environ.get("HF_API_KEY", "fake_key")
|
| 16 |
+
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloomz-560m"
|
| 17 |
+
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
|
| 18 |
+
|
| 19 |
+
# ✅ شكل البيانات المطلوبة في POST
|
| 20 |
class GradeInput(BaseModel):
|
| 21 |
question: str
|
| 22 |
model_answer: str
|
| 23 |
student_answer: str
|
| 24 |
|
| 25 |
+
# ✅ نقطة التقييم
|
| 26 |
@app.post("/evaluate")
|
| 27 |
def evaluate_answer(data: GradeInput):
|
| 28 |
+
if HF_API_KEY == "fake_key":
|
| 29 |
+
raise HTTPException(status_code=403, detail="❌ HF_API_KEY is not set in environment variables.")
|
| 30 |
+
|
| 31 |
+
# إنشاء الـ prompt
|
| 32 |
+
prompt = f"""
|
| 33 |
+
قيّم إجابة الطالب مقارنة بالإجابة النموذجية.
|
| 34 |
+
|
| 35 |
+
السؤال: {data.question}
|
| 36 |
+
الإجابة النموذجية: {data.model_answer}
|
| 37 |
+
إجابة الطالب: {data.student_answer}
|
| 38 |
+
|
| 39 |
+
أعط درجة من 10 وفسر لماذا، بصيغة JSON فقط:
|
| 40 |
+
{{"score": X, "feedback": "..."}}"""
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
response = requests.post(
|
| 44 |
+
API_URL,
|
| 45 |
+
headers=headers,
|
| 46 |
+
json={"inputs": prompt},
|
| 47 |
+
timeout=60
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
if response.status_code != 200:
|
| 51 |
+
raise HTTPException(status_code=500, detail=f"Model Error: {response.text}")
|
| 52 |
+
|
| 53 |
+
result = response.json()
|
| 54 |
+
|
| 55 |
+
# التحقق من وجود نص التوليد
|
| 56 |
+
if isinstance(result, dict) and "generated_text" in result:
|
| 57 |
+
full_text = result["generated_text"]
|
| 58 |
+
elif isinstance(result, list) and "generated_text" in result[0]:
|
| 59 |
+
full_text = result[0]["generated_text"]
|
| 60 |
+
else:
|
| 61 |
+
full_text = str(result)
|
| 62 |
+
|
| 63 |
+
# استخراج البيانات من النص الناتج
|
| 64 |
+
score_match = re.search(r'"score"\s*:\s*(\d+)', full_text)
|
| 65 |
+
feedback_match = re.search(r'"feedback"\s*:\s*"([^"]+)"', full_text)
|
| 66 |
+
|
| 67 |
+
score = int(score_match.group(1)) if score_match else 0
|
| 68 |
+
feedback = feedback_match.group(1) if feedback_match else "⚠️ لم يتم استخراج التغذية الراجعة."
|
| 69 |
+
|
| 70 |
+
return {
|
| 71 |
+
"score": score,
|
| 72 |
+
"feedback": feedback
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
except Exception as e:
|
| 76 |
+
raise HTTPException(status_code=500, detail=str(e))
|