Spaces:
Runtime error
Runtime error
go
Browse files- app.py +84 -5
- model_paths.json +1 -0
- requirements.txt +5 -0
app.py
CHANGED
@@ -1,10 +1,89 @@
|
|
1 |
-
from
|
2 |
-
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
|
6 |
-
def greet(name):
|
7 |
-
return "Hello " + name + "!!"
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
iface.launch()
|
|
|
1 |
+
from tqdm import tqdm
|
2 |
+
import numpy as np
|
3 |
|
4 |
+
from pathlib import Path
|
5 |
+
import json
|
6 |
+
|
7 |
+
# torch
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from einops import repeat
|
12 |
+
|
13 |
+
# vision imports
|
14 |
+
|
15 |
+
from PIL import Image
|
16 |
+
|
17 |
+
# dalle related classes and utils
|
18 |
+
|
19 |
+
from dalle_pytorch import VQGanVAE, DALLE
|
20 |
+
from dalle_pytorch.tokenizer import tokenizer
|
21 |
+
|
22 |
+
from io import BytesIO
|
23 |
import gradio as gr
|
24 |
|
|
|
|
|
25 |
|
26 |
+
# load DALL-E
|
27 |
+
|
28 |
+
def exists(val):
|
29 |
+
return val is not None
|
30 |
+
|
31 |
+
models = json.load(open("model_paths.json"))
|
32 |
+
|
33 |
+
|
34 |
+
vae = VQGanVAE(None, None)
|
35 |
+
|
36 |
+
dalles = {}
|
37 |
+
|
38 |
+
for name, model_path in models.items():
|
39 |
+
assert Path(model_path).exists(), 'trained DALL-E '+model_path+' must exist'
|
40 |
+
load_obj = torch.load(model_path)
|
41 |
+
dalle_params, _, weights = load_obj.pop('hparams'), load_obj.pop('vae_params'), load_obj.pop('weights')
|
42 |
+
dalle_params.pop('vae', None) # cleanup later
|
43 |
+
|
44 |
+
dalle = DALLE(vae = vae, **dalle_params).cuda()
|
45 |
+
|
46 |
+
dalle.load_state_dict(weights)
|
47 |
+
dalles[name] = dalle
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
batch_size = 4
|
52 |
+
|
53 |
+
top_k = 0.9
|
54 |
+
|
55 |
+
# generate images
|
56 |
+
|
57 |
+
image_size = vae.image_size
|
58 |
+
|
59 |
+
def generate(text):
|
60 |
+
text_input = text
|
61 |
+
num_images = 4
|
62 |
+
dalle_name = "weird_car"
|
63 |
+
dalle = dalles[dalle_name]
|
64 |
+
|
65 |
+
text = tokenizer.tokenize([text_input], dalle.text_seq_len).cuda()
|
66 |
+
|
67 |
+
text = repeat(text, '() n -> b n', b = num_images)
|
68 |
+
|
69 |
+
outputs = []
|
70 |
+
|
71 |
+
for text_chunk in tqdm(text.split(batch_size), desc = f'generating images for - {text}'):
|
72 |
+
output = dalle.generate_images(text_chunk, filter_thres = top_k)
|
73 |
+
outputs.append(output)
|
74 |
+
|
75 |
+
outputs = torch.cat(outputs)
|
76 |
+
|
77 |
+
response = []
|
78 |
+
|
79 |
+
for image in tqdm(outputs, desc = 'saving images'):
|
80 |
+
np_image = np.moveaxis(image.cpu().numpy(), 0, -1)
|
81 |
+
formatted = (np_image * 255).astype('uint8')
|
82 |
+
|
83 |
+
img = Image.fromarray(formatted)
|
84 |
+
response.append(img)
|
85 |
+
|
86 |
+
return response
|
87 |
+
|
88 |
+
iface = gr.Interface(fn=generate, inputs="text", outputs=gr.outputs.Carousel("image"))
|
89 |
iface.launch()
|
model_paths.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"weird_car":"weird_car_model_continue.pt"}
|
requirements.txt
CHANGED
@@ -1 +1,6 @@
|
|
1 |
dalle-pytorch
|
|
|
|
|
|
|
|
|
|
|
|
1 |
dalle-pytorch
|
2 |
+
numpy
|
3 |
+
tqdm
|
4 |
+
torch
|
5 |
+
torchvision
|
6 |
+
einops
|