Spaces:
Running
on
Zero
Running
on
Zero
rolpotamias
commited on
Commit
•
6460264
1
Parent(s):
cb6a364
Update app.py
Browse files
app.py
CHANGED
@@ -21,7 +21,6 @@ from wilor.utils import recursive_to
|
|
21 |
from wilor.datasets.vitdet_dataset import ViTDetDataset, DEFAULT_MEAN, DEFAULT_STD
|
22 |
from wilor.utils.renderer import Renderer, cam_crop_to_full
|
23 |
device = torch.device('cpu') if torch.cuda.is_available() else torch.device('cuda')
|
24 |
-
print('CUDA AVAILABLE', torch.cuda.is_available())
|
25 |
|
26 |
LIGHT_PURPLE=(0.25098039, 0.274117647, 0.65882353)
|
27 |
|
@@ -33,6 +32,31 @@ model.eval()
|
|
33 |
|
34 |
detector = YOLO('./pretrained_models/detector.pt').to(device)
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
@spaces.GPU()
|
37 |
def run_wilow_model(image, conf, IoU_threshold=0.5):
|
38 |
img_cv2 = image[...,::-1]
|
@@ -75,6 +99,8 @@ def run_wilow_model(image, conf, IoU_threshold=0.5):
|
|
75 |
|
76 |
with torch.no_grad():
|
77 |
out = model(batch)
|
|
|
|
|
78 |
print(out['pred_vertices'])
|
79 |
multiplier = (2*batch['right']-1)
|
80 |
pred_cam = out['pred_cam']
|
@@ -84,12 +110,7 @@ def run_wilow_model(image, conf, IoU_threshold=0.5):
|
|
84 |
img_size = batch["img_size"].float()
|
85 |
scaled_focal_length = model_cfg.EXTRA.FOCAL_LENGTH / model_cfg.MODEL.IMAGE_SIZE * img_size.max()
|
86 |
pred_cam_t_full = cam_crop_to_full(pred_cam, box_center, box_size, img_size, scaled_focal_length).detach().cpu().numpy()
|
87 |
-
|
88 |
-
# Render the result
|
89 |
-
all_verts = []
|
90 |
-
all_cam_t = []
|
91 |
-
all_right = []
|
92 |
-
all_joints = []
|
93 |
|
94 |
batch_size = batch['img'].shape[0]
|
95 |
for n in range(batch_size):
|
@@ -107,25 +128,11 @@ def run_wilow_model(image, conf, IoU_threshold=0.5):
|
|
107 |
all_cam_t.append(cam_t)
|
108 |
all_right.append(is_right)
|
109 |
all_joints.append(joints)
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
focal_length=scaled_focal_length,
|
116 |
-
)
|
117 |
-
print(all_verts[0])
|
118 |
-
print(all_cam_t[0])
|
119 |
-
cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=img_size[n], is_right=all_right, **misc_args)
|
120 |
-
|
121 |
-
# Overlay image
|
122 |
-
|
123 |
-
input_img = img_vis.astype(np.float32)/255.0
|
124 |
-
input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
|
125 |
-
input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
|
126 |
-
|
127 |
-
image = img_vis #input_img_overlay
|
128 |
-
return image, f'{len(detections)} hands detected'
|
129 |
|
130 |
|
131 |
|
@@ -168,7 +175,7 @@ with gr.Blocks(title="WiLoR: End-to-end 3D hand localization and reconstruction
|
|
168 |
reconstruction = gr.Image(label="Reconstructions", type="numpy")
|
169 |
hands_detected = gr.Textbox(label="Hands Detected")
|
170 |
|
171 |
-
submit.click(fn=
|
172 |
|
173 |
with gr.Row():
|
174 |
|
|
|
21 |
from wilor.datasets.vitdet_dataset import ViTDetDataset, DEFAULT_MEAN, DEFAULT_STD
|
22 |
from wilor.utils.renderer import Renderer, cam_crop_to_full
|
23 |
device = torch.device('cpu') if torch.cuda.is_available() else torch.device('cuda')
|
|
|
24 |
|
25 |
LIGHT_PURPLE=(0.25098039, 0.274117647, 0.65882353)
|
26 |
|
|
|
32 |
|
33 |
detector = YOLO('./pretrained_models/detector.pt').to(device)
|
34 |
|
35 |
+
def render_reconstruction(image, conf, IoU_threshold=0.5):
|
36 |
+
input_img, num_dets, reconstructions = run_wilow_model(image, conf, IoU_threshold=0.5)
|
37 |
+
if num_dets> 0:
|
38 |
+
# Render front view
|
39 |
+
|
40 |
+
misc_args = dict(
|
41 |
+
mesh_base_color=LIGHT_PURPLE,
|
42 |
+
scene_bg_color=(1, 1, 1),
|
43 |
+
focal_length=reconstructions['focal'],
|
44 |
+
)
|
45 |
+
|
46 |
+
cam_view = renderer.render_rgba_multiple(reconstructions['verts'],
|
47 |
+
cam_t=reconstructions['cam_t'],
|
48 |
+
render_res=reconstructions['img_size'],
|
49 |
+
is_right=reconstructions['right'], **misc_args)
|
50 |
+
|
51 |
+
# Overlay image
|
52 |
+
|
53 |
+
input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
|
54 |
+
input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
|
55 |
+
|
56 |
+
return input_img_overlay, f'{num_dets} hands detected'
|
57 |
+
else:
|
58 |
+
return input_img, f'{num_dets} hands detected'
|
59 |
+
|
60 |
@spaces.GPU()
|
61 |
def run_wilow_model(image, conf, IoU_threshold=0.5):
|
62 |
img_cv2 = image[...,::-1]
|
|
|
99 |
|
100 |
with torch.no_grad():
|
101 |
out = model(batch)
|
102 |
+
|
103 |
+
print('CUDA AVAILABLE', torch.cuda.is_available())
|
104 |
print(out['pred_vertices'])
|
105 |
multiplier = (2*batch['right']-1)
|
106 |
pred_cam = out['pred_cam']
|
|
|
110 |
img_size = batch["img_size"].float()
|
111 |
scaled_focal_length = model_cfg.EXTRA.FOCAL_LENGTH / model_cfg.MODEL.IMAGE_SIZE * img_size.max()
|
112 |
pred_cam_t_full = cam_crop_to_full(pred_cam, box_center, box_size, img_size, scaled_focal_length).detach().cpu().numpy()
|
113 |
+
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
batch_size = batch['img'].shape[0]
|
116 |
for n in range(batch_size):
|
|
|
128 |
all_cam_t.append(cam_t)
|
129 |
all_right.append(is_right)
|
130 |
all_joints.append(joints)
|
131 |
+
|
132 |
+
reconstructions = {'verts': all_verts, 'cam_t': all_cam_t, 'right': all_right, 'img_size': img_size[n], 'focal': scaled_focal_length}
|
133 |
+
return img_vis.astype(np.float32)/255.0, len(detections), reconstructions
|
134 |
+
else:
|
135 |
+
return img_vis.astype(np.float32)/255.0, len(detections), None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
|
138 |
|
|
|
175 |
reconstruction = gr.Image(label="Reconstructions", type="numpy")
|
176 |
hands_detected = gr.Textbox(label="Hands Detected")
|
177 |
|
178 |
+
submit.click(fn=render_reconstruction, inputs=[input_image, threshold], outputs=[reconstruction, hands_detected])
|
179 |
|
180 |
with gr.Row():
|
181 |
|