Spaces:
Running
on
Zero
Running
on
Zero
import os | |
if 'PYOPENGL_PLATFORM' not in os.environ: | |
os.environ['PYOPENGL_PLATFORM'] = 'egl' | |
import torch | |
from torchvision.utils import make_grid | |
import numpy as np | |
import pyrender | |
import trimesh | |
import cv2 | |
import torch.nn.functional as F | |
from .render_openpose import render_openpose | |
def create_raymond_lights(): | |
import pyrender | |
thetas = np.pi * np.array([1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0]) | |
phis = np.pi * np.array([0.0, 2.0 / 3.0, 4.0 / 3.0]) | |
nodes = [] | |
for phi, theta in zip(phis, thetas): | |
xp = np.sin(theta) * np.cos(phi) | |
yp = np.sin(theta) * np.sin(phi) | |
zp = np.cos(theta) | |
z = np.array([xp, yp, zp]) | |
z = z / np.linalg.norm(z) | |
x = np.array([-z[1], z[0], 0.0]) | |
if np.linalg.norm(x) == 0: | |
x = np.array([1.0, 0.0, 0.0]) | |
x = x / np.linalg.norm(x) | |
y = np.cross(z, x) | |
matrix = np.eye(4) | |
matrix[:3,:3] = np.c_[x,y,z] | |
nodes.append(pyrender.Node( | |
light=pyrender.DirectionalLight(color=np.ones(3), intensity=1.0), | |
matrix=matrix | |
)) | |
return nodes | |
class MeshRenderer: | |
def __init__(self, cfg, faces=None): | |
self.cfg = cfg | |
self.focal_length = cfg.EXTRA.FOCAL_LENGTH | |
self.img_res = cfg.MODEL.IMAGE_SIZE | |
self.renderer = pyrender.OffscreenRenderer(viewport_width=self.img_res, | |
viewport_height=self.img_res, | |
point_size=1.0) | |
self.camera_center = [self.img_res // 2, self.img_res // 2] | |
self.faces = faces | |
def visualize(self, vertices, camera_translation, images, focal_length=None, nrow=3, padding=2): | |
images_np = np.transpose(images, (0,2,3,1)) | |
rend_imgs = [] | |
for i in range(vertices.shape[0]): | |
fl = self.focal_length | |
rend_img = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=False), (2,0,1))).float() | |
rend_img_side = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=True), (2,0,1))).float() | |
rend_imgs.append(torch.from_numpy(images[i])) | |
rend_imgs.append(rend_img) | |
rend_imgs.append(rend_img_side) | |
rend_imgs = make_grid(rend_imgs, nrow=nrow, padding=padding) | |
return rend_imgs | |
def visualize_tensorboard(self, vertices, camera_translation, images, pred_keypoints, gt_keypoints, focal_length=None, nrow=5, padding=2): | |
images_np = np.transpose(images, (0,2,3,1)) | |
rend_imgs = [] | |
pred_keypoints = np.concatenate((pred_keypoints, np.ones_like(pred_keypoints)[:, :, [0]]), axis=-1) | |
pred_keypoints = self.img_res * (pred_keypoints + 0.5) | |
gt_keypoints[:, :, :-1] = self.img_res * (gt_keypoints[:, :, :-1] + 0.5) | |
#keypoint_matches = [(1, 12), (2, 8), (3, 7), (4, 6), (5, 9), (6, 10), (7, 11), (8, 14), (9, 2), (10, 1), (11, 0), (12, 3), (13, 4), (14, 5)] | |
for i in range(vertices.shape[0]): | |
fl = self.focal_length | |
rend_img = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=False), (2,0,1))).float() | |
rend_img_side = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=True), (2,0,1))).float() | |
hand_keypoints = pred_keypoints[i, :21] | |
#extra_keypoints = pred_keypoints[i, -19:] | |
#for pair in keypoint_matches: | |
# hand_keypoints[pair[0], :] = extra_keypoints[pair[1], :] | |
pred_keypoints_img = render_openpose(255 * images_np[i].copy(), hand_keypoints) / 255 | |
hand_keypoints = gt_keypoints[i, :21] | |
#extra_keypoints = gt_keypoints[i, -19:] | |
#for pair in keypoint_matches: | |
# if extra_keypoints[pair[1], -1] > 0 and hand_keypoints[pair[0], -1] == 0: | |
# hand_keypoints[pair[0], :] = extra_keypoints[pair[1], :] | |
gt_keypoints_img = render_openpose(255*images_np[i].copy(), hand_keypoints) / 255 | |
rend_imgs.append(torch.from_numpy(images[i])) | |
rend_imgs.append(rend_img) | |
rend_imgs.append(rend_img_side) | |
rend_imgs.append(torch.from_numpy(pred_keypoints_img).permute(2,0,1)) | |
rend_imgs.append(torch.from_numpy(gt_keypoints_img).permute(2,0,1)) | |
rend_imgs = make_grid(rend_imgs, nrow=nrow, padding=padding) | |
return rend_imgs | |
def __call__(self, vertices, camera_translation, image, focal_length=5000, text=None, resize=None, side_view=False, baseColorFactor=(1.0, 1.0, 0.9, 1.0), rot_angle=90): | |
renderer = pyrender.OffscreenRenderer(viewport_width=image.shape[1], | |
viewport_height=image.shape[0], | |
point_size=1.0) | |
material = pyrender.MetallicRoughnessMaterial( | |
metallicFactor=0.0, | |
alphaMode='OPAQUE', | |
baseColorFactor=baseColorFactor) | |
camera_translation[0] *= -1. | |
mesh = trimesh.Trimesh(vertices.copy(), self.faces.copy()) | |
if side_view: | |
rot = trimesh.transformations.rotation_matrix( | |
np.radians(rot_angle), [0, 1, 0]) | |
mesh.apply_transform(rot) | |
rot = trimesh.transformations.rotation_matrix( | |
np.radians(180), [1, 0, 0]) | |
mesh.apply_transform(rot) | |
mesh = pyrender.Mesh.from_trimesh(mesh, material=material) | |
scene = pyrender.Scene(bg_color=[0.0, 0.0, 0.0, 0.0], | |
ambient_light=(0.3, 0.3, 0.3)) | |
scene.add(mesh, 'mesh') | |
camera_pose = np.eye(4) | |
camera_pose[:3, 3] = camera_translation | |
camera_center = [image.shape[1] / 2., image.shape[0] / 2.] | |
camera = pyrender.IntrinsicsCamera(fx=focal_length, fy=focal_length, | |
cx=camera_center[0], cy=camera_center[1]) | |
scene.add(camera, pose=camera_pose) | |
light_nodes = create_raymond_lights() | |
for node in light_nodes: | |
scene.add_node(node) | |
color, rend_depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA) | |
color = color.astype(np.float32) / 255.0 | |
valid_mask = (color[:, :, -1] > 0)[:, :, np.newaxis] | |
if not side_view: | |
output_img = (color[:, :, :3] * valid_mask + | |
(1 - valid_mask) * image) | |
else: | |
output_img = color[:, :, :3] | |
if resize is not None: | |
output_img = cv2.resize(output_img, resize) | |
output_img = output_img.astype(np.float32) | |
renderer.delete() | |
return output_img | |