roll-ai's picture
Upload 333 files
e8bdafd verified
from pathlib import Path
from typing import Any, Dict, List
import torch
from pydantic import BaseModel
class State(BaseModel):
model_config = {"arbitrary_types_allowed": True}
train_frames: int # user-defined training frames, **containing one image padding frame**
train_height: int
train_width: int
transformer_config: Dict[str, Any] = None
controlnetxs_transformer_config: Dict[str, Any] = None
weight_dtype: torch.dtype = torch.float32
num_trainable_parameters: int = 0
overwrote_max_train_steps: bool = False
num_update_steps_per_epoch: int = 0
total_batch_size_count: int = 0
generator: torch.Generator | None = None
validation_prompts: List[str] = []
validation_images: List[Path | None] = []
validation_videos: List[Path | None] = []
image: torch.Tensor = None # C, H, W; value in [0, 255]
video: torch.Tensor = None # F, C, H, W; value in [-1, 1]
prompt_embedding: torch.Tensor = None # L, D
prompt: str = None
plucker_embedding: torch.Tensor = None # F, 6, H, W
timestep: torch.Tensor = None
using_deepspeed: bool = False