|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, Tuple |
|
|
|
|
|
import torch |
|
|
|
|
|
from cosmos_predict1.diffusion.functional.batch_ops import batch_mul |
|
|
|
|
|
|
|
|
def phi1(t: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Compute the first order phi function: (exp(t) - 1) / t. |
|
|
|
|
|
Args: |
|
|
t: Input tensor. |
|
|
|
|
|
Returns: |
|
|
Tensor: Result of phi1 function. |
|
|
""" |
|
|
input_dtype = t.dtype |
|
|
t = t.to(dtype=torch.float64) |
|
|
return (torch.expm1(t) / t).to(dtype=input_dtype) |
|
|
|
|
|
|
|
|
def phi2(t: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Compute the second order phi function: (phi1(t) - 1) / t. |
|
|
|
|
|
Args: |
|
|
t: Input tensor. |
|
|
|
|
|
Returns: |
|
|
Tensor: Result of phi2 function. |
|
|
""" |
|
|
input_dtype = t.dtype |
|
|
t = t.to(dtype=torch.float64) |
|
|
return ((phi1(t) - 1.0) / t).to(dtype=input_dtype) |
|
|
|
|
|
|
|
|
def res_x0_rk2_step( |
|
|
x_s: torch.Tensor, |
|
|
t: torch.Tensor, |
|
|
s: torch.Tensor, |
|
|
x0_s: torch.Tensor, |
|
|
s1: torch.Tensor, |
|
|
x0_s1: torch.Tensor, |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Perform a residual-based 2nd order Runge-Kutta step. |
|
|
|
|
|
Args: |
|
|
x_s: Current state tensor. |
|
|
t: Target time tensor. |
|
|
s: Current time tensor. |
|
|
x0_s: Prediction at current time. |
|
|
s1: Intermediate time tensor. |
|
|
x0_s1: Prediction at intermediate time. |
|
|
|
|
|
Returns: |
|
|
Tensor: Updated state tensor. |
|
|
|
|
|
Raises: |
|
|
AssertionError: If step size is too small. |
|
|
""" |
|
|
s = -torch.log(s) |
|
|
t = -torch.log(t) |
|
|
m = -torch.log(s1) |
|
|
|
|
|
dt = t - s |
|
|
assert not torch.any(torch.isclose(dt, torch.zeros_like(dt), atol=1e-6)), "Step size is too small" |
|
|
assert not torch.any(torch.isclose(m - s, torch.zeros_like(dt), atol=1e-6)), "Step size is too small" |
|
|
|
|
|
c2 = (m - s) / dt |
|
|
phi1_val, phi2_val = phi1(-dt), phi2(-dt) |
|
|
|
|
|
|
|
|
b1 = torch.nan_to_num(phi1_val - 1.0 / c2 * phi2_val, nan=0.0) |
|
|
b2 = torch.nan_to_num(1.0 / c2 * phi2_val, nan=0.0) |
|
|
|
|
|
return batch_mul(torch.exp(-dt), x_s) + batch_mul(dt, batch_mul(b1, x0_s) + batch_mul(b2, x0_s1)) |
|
|
|
|
|
|
|
|
def reg_x0_euler_step( |
|
|
x_s: torch.Tensor, |
|
|
s: torch.Tensor, |
|
|
t: torch.Tensor, |
|
|
x0_s: torch.Tensor, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Perform a regularized Euler step based on x0 prediction. |
|
|
|
|
|
Args: |
|
|
x_s: Current state tensor. |
|
|
s: Current time tensor. |
|
|
t: Target time tensor. |
|
|
x0_s: Prediction at current time. |
|
|
|
|
|
Returns: |
|
|
Tuple[Tensor, Tensor]: Updated state tensor and current prediction. |
|
|
""" |
|
|
coef_x0 = (s - t) / s |
|
|
coef_xs = t / s |
|
|
return batch_mul(coef_x0, x0_s) + batch_mul(coef_xs, x_s), x0_s |
|
|
|
|
|
|
|
|
def reg_eps_euler_step( |
|
|
x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, eps_s: torch.Tensor |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Perform a regularized Euler step based on epsilon prediction. |
|
|
|
|
|
Args: |
|
|
x_s: Current state tensor. |
|
|
s: Current time tensor. |
|
|
t: Target time tensor. |
|
|
eps_s: Epsilon prediction at current time. |
|
|
|
|
|
Returns: |
|
|
Tuple[Tensor, Tensor]: Updated state tensor and current x0 prediction. |
|
|
""" |
|
|
return x_s + batch_mul(eps_s, t - s), x_s + batch_mul(eps_s, 0 - s) |
|
|
|
|
|
|
|
|
def rk1_euler( |
|
|
x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, x0_fn: Callable |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Perform a first-order Runge-Kutta (Euler) step. |
|
|
|
|
|
Recommended for diffusion models with guidance or model undertrained |
|
|
Usually more stable at the cost of a bit slower convergence. |
|
|
|
|
|
Args: |
|
|
x_s: Current state tensor. |
|
|
s: Current time tensor. |
|
|
t: Target time tensor. |
|
|
x0_fn: Function to compute x0 prediction. |
|
|
|
|
|
Returns: |
|
|
Tuple[Tensor, Tensor]: Updated state tensor and x0 prediction. |
|
|
""" |
|
|
x0_s = x0_fn(x_s, s) |
|
|
return reg_x0_euler_step(x_s, s, t, x0_s) |
|
|
|
|
|
|
|
|
def rk2_mid_stable( |
|
|
x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, x0_fn: Callable |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Perform a stable second-order Runge-Kutta (midpoint) step. |
|
|
|
|
|
Args: |
|
|
x_s: Current state tensor. |
|
|
s: Current time tensor. |
|
|
t: Target time tensor. |
|
|
x0_fn: Function to compute x0 prediction. |
|
|
|
|
|
Returns: |
|
|
Tuple[Tensor, Tensor]: Updated state tensor and x0 prediction. |
|
|
""" |
|
|
s1 = torch.sqrt(s * t) |
|
|
x_s1, _ = rk1_euler(x_s, s, s1, x0_fn) |
|
|
|
|
|
x0_s1 = x0_fn(x_s1, s1) |
|
|
return reg_x0_euler_step(x_s, s, t, x0_s1) |
|
|
|
|
|
|
|
|
def rk2_mid(x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, x0_fn: Callable) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Perform a second-order Runge-Kutta (midpoint) step. |
|
|
|
|
|
Args: |
|
|
x_s: Current state tensor. |
|
|
s: Current time tensor. |
|
|
t: Target time tensor. |
|
|
x0_fn: Function to compute x0 prediction. |
|
|
|
|
|
Returns: |
|
|
Tuple[Tensor, Tensor]: Updated state tensor and x0 prediction. |
|
|
""" |
|
|
s1 = torch.sqrt(s * t) |
|
|
x_s1, x0_s = rk1_euler(x_s, s, s1, x0_fn) |
|
|
|
|
|
x0_s1 = x0_fn(x_s1, s1) |
|
|
|
|
|
return res_x0_rk2_step(x_s, t, s, x0_s, s1, x0_s1), x0_s1 |
|
|
|
|
|
|
|
|
def rk_2heun_naive( |
|
|
x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, x0_fn: Callable |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Perform a naive second-order Runge-Kutta (Heun's method) step. |
|
|
Impl based on rho-rk-deis solvers, https://github.com/qsh-zh/deis |
|
|
Recommended for diffusion models without guidance and relative large NFE |
|
|
|
|
|
Args: |
|
|
x_s: Current state tensor. |
|
|
s: Current time tensor. |
|
|
t: Target time tensor. |
|
|
x0_fn: Function to compute x0 prediction. |
|
|
|
|
|
Returns: |
|
|
Tuple[Tensor, Tensor]: Updated state tensor and current state. |
|
|
""" |
|
|
x_t, x0_s = rk1_euler(x_s, s, t, x0_fn) |
|
|
eps_s = batch_mul(1.0 / s, x_t - x0_s) |
|
|
x0_t = x0_fn(x_t, t) |
|
|
eps_t = batch_mul(1.0 / t, x_t - x0_t) |
|
|
|
|
|
avg_eps = (eps_s + eps_t) / 2 |
|
|
|
|
|
return reg_eps_euler_step(x_s, s, t, avg_eps) |
|
|
|
|
|
|
|
|
def rk_2heun_edm( |
|
|
x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, x0_fn: Callable |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Perform a naive second-order Runge-Kutta (Heun's method) step. |
|
|
Impl based no EDM second order Heun method |
|
|
|
|
|
Args: |
|
|
x_s: Current state tensor. |
|
|
s: Current time tensor. |
|
|
t: Target time tensor. |
|
|
x0_fn: Function to compute x0 prediction. |
|
|
|
|
|
Returns: |
|
|
Tuple[Tensor, Tensor]: Updated state tensor and current state. |
|
|
""" |
|
|
x_t, x0_s = rk1_euler(x_s, s, t, x0_fn) |
|
|
x0_t = x0_fn(x_t, t) |
|
|
|
|
|
avg_x0 = (x0_s + x0_t) / 2 |
|
|
|
|
|
return reg_x0_euler_step(x_s, s, t, avg_x0) |
|
|
|
|
|
|
|
|
def rk_3kutta_naive( |
|
|
x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, x0_fn: Callable |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Perform a naive third-order Runge-Kutta step. |
|
|
Impl based on rho-rk-deis solvers, https://github.com/qsh-zh/deis |
|
|
Recommended for diffusion models without guidance and relative large NFE |
|
|
|
|
|
Args: |
|
|
x_s: Current state tensor. |
|
|
s: Current time tensor. |
|
|
t: Target time tensor. |
|
|
x0_fn: Function to compute x0 prediction. |
|
|
|
|
|
Returns: |
|
|
Tuple[Tensor, Tensor]: Updated state tensor and current state. |
|
|
""" |
|
|
c2, c3 = 0.5, 1.0 |
|
|
a31, a32 = -1.0, 2.0 |
|
|
b1, b2, b3 = 1.0 / 6, 4.0 / 6, 1.0 / 6 |
|
|
|
|
|
delta = t - s |
|
|
|
|
|
s1 = c2 * delta + s |
|
|
s2 = c3 * delta + s |
|
|
x_s1, x0_s = rk1_euler(x_s, s, s1, x0_fn) |
|
|
eps_s = batch_mul(1.0 / s, x_s - x0_s) |
|
|
x0_s1 = x0_fn(x_s1, s1) |
|
|
eps_s1 = batch_mul(1.0 / s1, x_s1 - x0_s1) |
|
|
|
|
|
_eps = a31 * eps_s + a32 * eps_s1 |
|
|
x_s2, _ = reg_eps_euler_step(x_s, s, s2, _eps) |
|
|
|
|
|
x0_s2 = x0_fn(x_s2, s2) |
|
|
eps_s2 = batch_mul(1.0 / s2, x_s2 - x0_s2) |
|
|
|
|
|
avg_eps = b1 * eps_s + b2 * eps_s1 + b3 * eps_s2 |
|
|
return reg_eps_euler_step(x_s, s, t, avg_eps) |
|
|
|
|
|
|
|
|
|
|
|
RK_FNs = { |
|
|
"1euler": rk1_euler, |
|
|
"2mid": rk2_mid, |
|
|
"2mid_stable": rk2_mid_stable, |
|
|
"2heun_edm": rk_2heun_edm, |
|
|
"2heun_naive": rk_2heun_naive, |
|
|
"3kutta_naive": rk_3kutta_naive, |
|
|
} |
|
|
|
|
|
|
|
|
def get_runge_kutta_fn(name: str) -> Callable: |
|
|
""" |
|
|
Get the specified Runge-Kutta function. |
|
|
|
|
|
Args: |
|
|
name: Name of the Runge-Kutta method. |
|
|
|
|
|
Returns: |
|
|
Callable: The specified Runge-Kutta function. |
|
|
|
|
|
Raises: |
|
|
RuntimeError: If the specified method is not supported. |
|
|
""" |
|
|
if name in RK_FNs: |
|
|
return RK_FNs[name] |
|
|
methods = "\n\t".join(RK_FNs.keys()) |
|
|
raise RuntimeError(f"Only support the following Runge-Kutta methods:\n\t{methods}") |
|
|
|
|
|
|
|
|
def is_runge_kutta_fn_supported(name: str) -> bool: |
|
|
""" |
|
|
Check if the specified Runge-Kutta function is supported. |
|
|
|
|
|
Args: |
|
|
name: Name of the Runge-Kutta method. |
|
|
|
|
|
Returns: |
|
|
bool: True if the method is supported, False otherwise. |
|
|
""" |
|
|
return name in RK_FNs |
|
|
|