roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A CLI to export an pre-trained tokenizer checkpoint into a torch.ScriptModule.
Usage:
python3 -m cosmos_predict1.tokenizer.training.jit_cli \
--ckpt_path=checkpoints/Cosmos-0.1-Tokenizer-CV4x8x8/iter_001000000.pt \
--output_dir=checkpoints/Cosmos-0.1-Tokenizer-CV4x8x8/exported \
--strict_resume \
--config=cosmos_predict1/tokenizer/training/configs/config.py -- \
experiment=CV720_Causal_AE49_4x8x8_cosmos
will output:
<output-dir>/iter_001000000_ema.jit
<output-dir>/iter_001000000_enc.jit
<output-dir>/iter_001000000_dec.jit
if --reg is specified, it will export the regular model:
<output-dir>/iter_001000000_reg.jit
<output-dir>/iter_001000000_enc.jit
<output-dir>/iter_001000000_dec.jit
"""
import argparse
import importlib
import os
import torch
from loguru import logger as logging
from torch._dynamo.eval_frame import OptimizedModule as torch_OptimizedModule
from cosmos_predict1.tokenizer.training.checkpointer import TokenizerCheckpointer
from cosmos_predict1.utils import callback, ema
from cosmos_predict1.utils.config import Config
from cosmos_predict1.utils.config_helper import get_config_module, override
from cosmos_predict1.utils.lazy_config import instantiate
from cosmos_predict1.utils.model import Model
parser = argparse.ArgumentParser(description="Export a pre-trained model into a torch.jit.ScriptModule.")
parser.add_argument(
"--config", type=str, default="cosmos_predict1/tokenizer/training/configs/config.py", help="Path to the config file"
)
parser.add_argument("--ckpt_path", type=str, default=None, help="The full ckpt path.")
parser.add_argument("--credentials", type=str, default="credentials/pdx_vfm_base.secret", help="The credentials file.")
parser.add_argument("--strict_resume", action="store_true", help="Enable strictly loading into every network weight.")
parser.add_argument("--reg", action="store_true", help="Enable regular model export.")
parser.add_argument("--output_dir", type=str, default=None, help="Optional output directory.")
parser.add_argument(
"opts",
help="""
Modify config options at the end of the command. For Yacs configs, use
space-separated "PATH.KEY VALUE" pairs.
For python-based LazyConfig, use "path.key=value".
""".strip(),
default=None,
nargs=argparse.REMAINDER,
)
logging.info("Initialize args, cfg from command line arguments ...")
args = parser.parse_args()
config_module = get_config_module(args.config)
config: Config = importlib.import_module(config_module).make_config()
config = override(config, args.opts)
def _compile_jit_models(model: Model) -> dict[str, torch.ScriptModule]:
"""Returns a TorchScript version of REG or EMA models compiled by PyTorch JIT."""
assert hasattr(config, "checkpoint") and hasattr(config.checkpoint, "jit")
config_jit = config.checkpoint.jit
input_shape = tuple(config_jit.input_shape)
example_input = torch.randn(input_shape)
dtype = getattr(torch, config_jit.dtype)
example_input = example_input.to(config_jit.device).to(dtype)
# Make sure jit model output consistenly during consecutive calls
# Check here: https://github.com/pytorch/pytorch/issues/74534
torch._C._jit_set_texpr_fuser_enabled(False)
with ema.ema_scope(model, enabled=model.config.ema.enabled and not args.reg):
_model = model.network.eval()
if isinstance(_model, torch_OptimizedModule):
_model = _model._orig_mod
model_jit = torch.jit.trace(_model, example_input, strict=config_jit.strict)
encoder_jit = torch.jit.trace(_model.encoder_jit(), example_input, strict=config_jit.strict)
decoder_example = encoder_jit(example_input)[0]
decoder_jit = torch.jit.trace(_model.decoder_jit(), decoder_example, strict=config_jit.strict)
if args.reg:
return {"reg": model_jit, "enc": encoder_jit, "dec": decoder_jit}
return {"ema": model_jit, "enc": encoder_jit, "dec": decoder_jit}
def _run_export() -> None:
"""Exports a torch.nn.Module into a torch.jit.ScriptModule."""
# Check that the config is valid.
config.validate()
config.checkpoint.load_path = args.ckpt_path
config.checkpoint.strict_resume = args.strict_resume
config.checkpoint.load_training_state = False
config.job.name = os.path.basename(args.output_dir) if args.output_dir else os.path.basename(args.ckpt_path)
# Freeze the config.
config.freeze() # type: ignore
callbacks = callback.CallBackGroup(config=config, trainer=None)
checkpointer = TokenizerCheckpointer(config.checkpoint, config.job, callbacks=callbacks)
# Create the model.
logging.info(f"Instantiate model={config.model.config.network.name} ...")
model = instantiate(config.model)
model = model.to("cuda", memory_format=config.trainer.memory_format) # type: ignore
model.on_train_start(config.trainer.memory_format)
logging.info(f"loading weights from {config.checkpoint.load_path}...")
_ = checkpointer.load(model)
model.eval()
ckpt_name = config.checkpoint.load_path.split("/")[-1][:-3]
# Drive the output directory.
tmp_output_dir = os.path.dirname(config.checkpoint.load_path)
output_dir = args.output_dir or tmp_output_dir
os.makedirs(output_dir, exist_ok=True)
logging.info("Performing JIT compilation ...")
jit_models = _compile_jit_models(model)
for name, jit_model in jit_models.items():
logging.info(f"Outputing torch.jit: {output_dir}/{ckpt_name}_{name}.jit")
torch.jit.save(jit_model, f"{output_dir}/{ckpt_name}_{name}.jit")
@logging.catch(reraise=True)
def main() -> None:
_run_export()
if __name__ == "__main__":
main()