Spaces:
Paused
Paused
import hashlib | |
from pathlib import Path | |
from typing import TYPE_CHECKING, Any, Dict, List, Tuple | |
import torch | |
from accelerate.logging import get_logger | |
from safetensors.torch import load_file, save_file | |
from torch.utils.data import Dataset | |
from torchvision import transforms | |
from typing_extensions import override | |
from finetune.constants import LOG_LEVEL, LOG_NAME | |
from .utils import ( | |
load_images, | |
load_images_from_videos, | |
load_prompts, | |
load_videos, | |
preprocess_image_with_resize, | |
preprocess_video_with_buckets, | |
preprocess_video_with_resize, | |
) | |
if TYPE_CHECKING: | |
from finetune.trainer import Trainer | |
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error | |
# Very few bug reports but it happens. Look in decord Github issues for more relevant information. | |
import decord # isort:skip | |
decord.bridge.set_bridge("torch") | |
logger = get_logger(LOG_NAME, LOG_LEVEL) | |
class BaseI2VDataset(Dataset): | |
""" | |
Base dataset class for Image-to-Video (I2V) training. | |
This dataset loads prompts, videos and corresponding conditioning images for I2V training. | |
Args: | |
data_root (str): Root directory containing the dataset files | |
caption_column (str): Path to file containing text prompts/captions | |
video_column (str): Path to file containing video paths | |
image_column (str): Path to file containing image paths | |
device (torch.device): Device to load the data on | |
encode_video_fn (Callable[[torch.Tensor], torch.Tensor], optional): Function to encode videos | |
""" | |
def __init__( | |
self, | |
data_root: str, | |
caption_column: str, | |
video_column: str, | |
image_column: str | None, | |
device: torch.device, | |
trainer: "Trainer" = None, | |
*args, | |
**kwargs, | |
) -> None: | |
super().__init__() | |
data_root = Path(data_root) | |
self.prompts = load_prompts(data_root / caption_column) | |
self.videos = load_videos(data_root / video_column) | |
if image_column is not None: | |
self.images = load_images(data_root / image_column) | |
else: | |
self.images = load_images_from_videos(self.videos) | |
self.trainer = trainer | |
self.device = device | |
self.encode_video = trainer.encode_video | |
self.encode_text = trainer.encode_text | |
# Check if number of prompts matches number of videos and images | |
if not (len(self.videos) == len(self.prompts) == len(self.images)): | |
raise ValueError( | |
f"Expected length of prompts, videos and images to be the same but found {len(self.prompts)=}, {len(self.videos)=} and {len(self.images)=}. Please ensure that the number of caption prompts, videos and images match in your dataset." | |
) | |
# Check if all video files exist | |
if any(not path.is_file() for path in self.videos): | |
raise ValueError( | |
f"Some video files were not found. Please ensure that all video files exist in the dataset directory. Missing file: {next(path for path in self.videos if not path.is_file())}" | |
) | |
# Check if all image files exist | |
if any(not path.is_file() for path in self.images): | |
raise ValueError( | |
f"Some image files were not found. Please ensure that all image files exist in the dataset directory. Missing file: {next(path for path in self.images if not path.is_file())}" | |
) | |
def __len__(self) -> int: | |
return len(self.videos) | |
def __getitem__(self, index: int) -> Dict[str, Any]: | |
if isinstance(index, list): | |
# Here, index is actually a list of data objects that we need to return. | |
# The BucketSampler should ideally return indices. But, in the sampler, we'd like | |
# to have information about num_frames, height and width. Since this is not stored | |
# as metadata, we need to read the video to get this information. You could read this | |
# information without loading the full video in memory, but we do it anyway. In order | |
# to not load the video twice (once to get the metadata, and once to return the loaded video | |
# based on sampled indices), we cache it in the BucketSampler. When the sampler is | |
# to yield, we yield the cache data instead of indices. So, this special check ensures | |
# that data is not loaded a second time. PRs are welcome for improvements. | |
return index | |
prompt = self.prompts[index] | |
video = self.videos[index] | |
image = self.images[index] | |
train_resolution_str = "x".join(str(x) for x in self.trainer.args.train_resolution) | |
cache_dir = self.trainer.args.data_root / "cache" | |
video_latent_dir = cache_dir / "video_latent" / self.trainer.args.model_name / train_resolution_str | |
prompt_embeddings_dir = cache_dir / "prompt_embeddings" | |
video_latent_dir.mkdir(parents=True, exist_ok=True) | |
prompt_embeddings_dir.mkdir(parents=True, exist_ok=True) | |
prompt_hash = str(hashlib.sha256(prompt.encode()).hexdigest()) | |
prompt_embedding_path = prompt_embeddings_dir / (prompt_hash + ".safetensors") | |
encoded_video_path = video_latent_dir / (video.stem + ".safetensors") | |
if prompt_embedding_path.exists(): | |
prompt_embedding = load_file(prompt_embedding_path)["prompt_embedding"] | |
logger.debug( | |
f"process {self.trainer.accelerator.process_index}: Loaded prompt embedding from {prompt_embedding_path}", | |
main_process_only=False, | |
) | |
else: | |
prompt_embedding = self.encode_text(prompt) | |
prompt_embedding = prompt_embedding.to("cpu") | |
# [1, seq_len, hidden_size] -> [seq_len, hidden_size] | |
prompt_embedding = prompt_embedding[0] | |
save_file({"prompt_embedding": prompt_embedding}, prompt_embedding_path) | |
logger.info(f"Saved prompt embedding to {prompt_embedding_path}", main_process_only=False) | |
if encoded_video_path.exists(): | |
encoded_video = load_file(encoded_video_path)["encoded_video"] | |
logger.debug(f"Loaded encoded video from {encoded_video_path}", main_process_only=False) | |
# shape of image: [C, H, W] | |
_, image = self.preprocess(None, self.images[index]) | |
image = self.image_transform(image) | |
else: | |
frames, image = self.preprocess(video, image) | |
frames = frames.to(self.device) | |
image = image.to(self.device) | |
image = self.image_transform(image) | |
# Current shape of frames: [F, C, H, W] | |
frames = self.video_transform(frames) | |
# Convert to [B, C, F, H, W] | |
frames = frames.unsqueeze(0) | |
frames = frames.permute(0, 2, 1, 3, 4).contiguous() | |
encoded_video = self.encode_video(frames) | |
# [1, C, F, H, W] -> [C, F, H, W] | |
encoded_video = encoded_video[0] | |
encoded_video = encoded_video.to("cpu") | |
image = image.to("cpu") | |
save_file({"encoded_video": encoded_video}, encoded_video_path) | |
logger.info(f"Saved encoded video to {encoded_video_path}", main_process_only=False) | |
# shape of encoded_video: [C, F, H, W] | |
# shape of image: [C, H, W] | |
return { | |
"image": image, | |
"prompt_embedding": prompt_embedding, | |
"encoded_video": encoded_video, | |
"video_metadata": { | |
"num_frames": encoded_video.shape[1], | |
"height": encoded_video.shape[2], | |
"width": encoded_video.shape[3], | |
}, | |
} | |
def preprocess(self, video_path: Path | None, image_path: Path | None) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Loads and preprocesses a video and an image. | |
If either path is None, no preprocessing will be done for that input. | |
Args: | |
video_path: Path to the video file to load | |
image_path: Path to the image file to load | |
Returns: | |
A tuple containing: | |
- video(torch.Tensor) of shape [F, C, H, W] where F is number of frames, | |
C is number of channels, H is height and W is width | |
- image(torch.Tensor) of shape [C, H, W] | |
""" | |
raise NotImplementedError("Subclass must implement this method") | |
def video_transform(self, frames: torch.Tensor) -> torch.Tensor: | |
""" | |
Applies transformations to a video. | |
Args: | |
frames (torch.Tensor): A 4D tensor representing a video | |
with shape [F, C, H, W] where: | |
- F is number of frames | |
- C is number of channels (3 for RGB) | |
- H is height | |
- W is width | |
Returns: | |
torch.Tensor: The transformed video tensor | |
""" | |
raise NotImplementedError("Subclass must implement this method") | |
def image_transform(self, image: torch.Tensor) -> torch.Tensor: | |
""" | |
Applies transformations to an image. | |
Args: | |
image (torch.Tensor): A 3D tensor representing an image | |
with shape [C, H, W] where: | |
- C is number of channels (3 for RGB) | |
- H is height | |
- W is width | |
Returns: | |
torch.Tensor: The transformed image tensor | |
""" | |
raise NotImplementedError("Subclass must implement this method") | |
class I2VDatasetWithResize(BaseI2VDataset): | |
""" | |
A dataset class for image-to-video generation that resizes inputs to fixed dimensions. | |
This class preprocesses videos and images by resizing them to specified dimensions: | |
- Videos are resized to max_num_frames x height x width | |
- Images are resized to height x width | |
Args: | |
max_num_frames (int): Maximum number of frames to extract from videos | |
height (int): Target height for resizing videos and images | |
width (int): Target width for resizing videos and images | |
""" | |
def __init__(self, max_num_frames: int, height: int, width: int, *args, **kwargs) -> None: | |
super().__init__(*args, **kwargs) | |
self.max_num_frames = max_num_frames | |
self.height = height | |
self.width = width | |
self.__frame_transforms = transforms.Compose([transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)]) | |
self.__image_transforms = self.__frame_transforms | |
def preprocess(self, video_path: Path | None, image_path: Path | None) -> Tuple[torch.Tensor, torch.Tensor]: | |
if video_path is not None: | |
video = preprocess_video_with_resize(video_path, self.max_num_frames, self.height, self.width) | |
else: | |
video = None | |
if image_path is not None: | |
image = preprocess_image_with_resize(image_path, self.height, self.width) | |
else: | |
image = None | |
return video, image | |
def video_transform(self, frames: torch.Tensor) -> torch.Tensor: | |
return torch.stack([self.__frame_transforms(f) for f in frames], dim=0) | |
def image_transform(self, image: torch.Tensor) -> torch.Tensor: | |
return self.__image_transforms(image) | |
class I2VDatasetWithBuckets(BaseI2VDataset): | |
def __init__( | |
self, | |
video_resolution_buckets: List[Tuple[int, int, int]], | |
vae_temporal_compression_ratio: int, | |
vae_height_compression_ratio: int, | |
vae_width_compression_ratio: int, | |
*args, | |
**kwargs, | |
) -> None: | |
super().__init__(*args, **kwargs) | |
self.video_resolution_buckets = [ | |
( | |
int(b[0] / vae_temporal_compression_ratio), | |
int(b[1] / vae_height_compression_ratio), | |
int(b[2] / vae_width_compression_ratio), | |
) | |
for b in video_resolution_buckets | |
] | |
self.__frame_transforms = transforms.Compose([transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)]) | |
self.__image_transforms = self.__frame_transforms | |
def preprocess(self, video_path: Path, image_path: Path) -> Tuple[torch.Tensor, torch.Tensor]: | |
video = preprocess_video_with_buckets(video_path, self.video_resolution_buckets) | |
image = preprocess_image_with_resize(image_path, video.shape[2], video.shape[3]) | |
return video, image | |
def video_transform(self, frames: torch.Tensor) -> torch.Tensor: | |
return torch.stack([self.__frame_transforms(f) for f in frames], dim=0) | |
def image_transform(self, image: torch.Tensor) -> torch.Tensor: | |
return self.__image_transforms(image) | |