Spaces:
Running
Running
| import os | |
| import yaml | |
| import torch | |
| from transformers import AlbertConfig, AlbertModel | |
| class CustomAlbert(AlbertModel): | |
| def forward(self, *args, **kwargs): | |
| # Call the original forward method | |
| outputs = super().forward(*args, **kwargs) | |
| # Only return the last_hidden_state | |
| return outputs.last_hidden_state | |
| def load_plbert(log_dir): | |
| config_path = os.path.join(log_dir, "config.yml") | |
| plbert_config = yaml.safe_load(open(config_path)) | |
| albert_base_configuration = AlbertConfig(**plbert_config["model_params"]) | |
| bert = CustomAlbert(albert_base_configuration) | |
| files = os.listdir(log_dir) | |
| ckpts = [] | |
| for f in os.listdir(log_dir): | |
| if f.startswith("step_"): | |
| ckpts.append(f) | |
| iters = [ | |
| int(f.split("_")[-1].split(".")[0]) | |
| for f in ckpts | |
| if os.path.isfile(os.path.join(log_dir, f)) | |
| ] | |
| iters = sorted(iters)[-1] | |
| checkpoint = torch.load(log_dir + "/step_" + str(iters) + ".t7", map_location="cpu") | |
| state_dict = checkpoint["net"] | |
| from collections import OrderedDict | |
| new_state_dict = OrderedDict() | |
| for k, v in state_dict.items(): | |
| name = k[7:] # remove `module.` | |
| if name.startswith("encoder."): | |
| name = name[8:] # remove `encoder.` | |
| new_state_dict[name] = v | |
| del new_state_dict["embeddings.position_ids"] | |
| bert.load_state_dict(new_state_dict, strict=False) | |
| return bert | |