Spaces:
Sleeping
Sleeping
Commit
·
7e04194
1
Parent(s):
1ac28a7
Upload 5 files
Browse files
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
DP.keras filter=lfs diff=lfs merge=lfs -text
|
37 |
+
LS.keras filter=lfs diff=lfs merge=lfs -text
|
38 |
+
RN.keras filter=lfs diff=lfs merge=lfs -text
|
DP.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:effe5efada6ccfaab2dc6ce3e189954b9c9b3abbaf86b2bdbe1f11d18d3684f0
|
3 |
+
size 10735120
|
LS.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:705ae60751f9f288daf9486f5b3535e437fd7aabb96c5b79f908e7f5e68c9b02
|
3 |
+
size 4194296
|
PP.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d490b9361db03dbd503b6a1424976d05a9865eefe505327b2ad342b989737eba
|
3 |
+
size 2264
|
RN.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56f772e386a259788dabcb7189fbe4327b3a31924fd0104e9d52c1c626101262
|
3 |
+
size 1548448
|
Stream.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
from tensorflow.keras.datasets import imdb
|
6 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
7 |
+
import pickle
|
8 |
+
|
9 |
+
# Load word index for Sentiment Classification
|
10 |
+
word_to_index = imdb.get_word_index()
|
11 |
+
|
12 |
+
# Function to perform sentiment classification
|
13 |
+
def sentiment_classification(new_review_text, model):
|
14 |
+
max_review_length = 500
|
15 |
+
new_review_tokens = [word_to_index.get(word, 0) for word in new_review_text.split()]
|
16 |
+
new_review_tokens = pad_sequences([new_review_tokens], maxlen=max_review_length)
|
17 |
+
prediction = model.predict(new_review_tokens)
|
18 |
+
if type(prediction) == list:
|
19 |
+
prediction = prediction[0]
|
20 |
+
return "Positive" if prediction > 0.5 else "Negative"
|
21 |
+
|
22 |
+
# Function to perform tumor detection
|
23 |
+
def tumor_detection(img, model):
|
24 |
+
img = Image.open(img)
|
25 |
+
img=img.resize((128,128))
|
26 |
+
img=np.array(img)
|
27 |
+
input_img = np.expand_dims(img, axis=0)
|
28 |
+
res = model.predict(input_img)
|
29 |
+
return "Tumor Detected" if res else "No Tumor"
|
30 |
+
|
31 |
+
# Streamlit App
|
32 |
+
st.title("ALL MODELS")
|
33 |
+
|
34 |
+
# Choose between tasks
|
35 |
+
task = st.radio("Select Task", ("Sentiment Classification", "Tumor Detection"))
|
36 |
+
|
37 |
+
if task == "Sentiment Classification":
|
38 |
+
# Input box for new review
|
39 |
+
new_review_text = st.text_area("Enter a New Review:", value="")
|
40 |
+
if st.button("Submit") and not new_review_text.strip():
|
41 |
+
st.warning("Please enter a review.")
|
42 |
+
|
43 |
+
if new_review_text.strip():
|
44 |
+
st.subheader("Choose Model for Sentiment Classification")
|
45 |
+
model_option = st.selectbox("Select Model", ("Perceptron", "Backpropagation", "DNN", "RNN", "LSTM"))
|
46 |
+
|
47 |
+
# Load models dynamically based on the selected option
|
48 |
+
if model_option == "Perceptron":
|
49 |
+
with open('PP.pkl', 'rb') as file:
|
50 |
+
model = pickle.load(file)
|
51 |
+
elif model_option == "Backpropagation":
|
52 |
+
with open('BP.pkl', 'rb') as file:
|
53 |
+
model = pickle.load(file)
|
54 |
+
elif model_option == "DNN":
|
55 |
+
model = load_model('DP.keras')
|
56 |
+
elif model_option == "RNN":
|
57 |
+
model = load_model('RN.keras')
|
58 |
+
elif model_option == "LSTM":
|
59 |
+
model = load_model('LS.keras')
|
60 |
+
|
61 |
+
if st.button("Classify Sentiment"):
|
62 |
+
result = sentiment_classification(new_review_text, model)
|
63 |
+
st.subheader("Sentiment Classification Result")
|
64 |
+
st.write(f"**{result}**")
|
65 |
+
|
66 |
+
elif task == "Tumor Detection":
|
67 |
+
st.subheader("Tumor Detection")
|
68 |
+
uploaded_file = st.file_uploader("Choose a tumor image...", type=["jpg", "jpeg", "png"])
|
69 |
+
|
70 |
+
if uploaded_file is not None:
|
71 |
+
# Load the tumor detection model
|
72 |
+
model = load_model("D:\STUDY\S3\DEEP LEARNING\comb\cnn.pkl")
|
73 |
+
st.image(uploaded_file, caption="Uploaded Image.", use_column_width=False, width=200)
|
74 |
+
st.write("")
|
75 |
+
|
76 |
+
if st.button("Detect Tumor"):
|
77 |
+
result = tumor_detection(uploaded_file, model)
|
78 |
+
st.subheader("Tumor Detection Result")
|
79 |
+
st.write(f"**{result}**")
|