Spaces:
Sleeping
Sleeping
rohitashva
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Set up the title and description of the app
|
5 |
+
st.title("My LLM Model: Dementia Knowledge Assistant")
|
6 |
+
st.markdown("""
|
7 |
+
This app uses a fine-tuned **Large Language Model (LLM)** to answer questions about dementia.
|
8 |
+
Simply input your query, and the model will provide contextually relevant answers!
|
9 |
+
""")
|
10 |
+
|
11 |
+
# Load the model
|
12 |
+
@st.cache_resource
|
13 |
+
def load_qa_pipeline():
|
14 |
+
model_name = "rohitashva/dementia--chatbot-llm-model" # Replace with your Hugging Face model repo name
|
15 |
+
qa_pipeline = pipeline("text-generation", model=model_name)
|
16 |
+
return qa_pipeline
|
17 |
+
|
18 |
+
qa_pipeline = load_qa_pipeline()
|
19 |
+
|
20 |
+
# Input field for user query
|
21 |
+
st.header("Ask a Question")
|
22 |
+
question = st.text_input("Enter your question about dementia (e.g., 'What are the symptoms of early-stage dementia?'):")
|
23 |
+
|
24 |
+
# Context input for retrieval
|
25 |
+
st.text_area(
|
26 |
+
"Provide additional context (optional):",
|
27 |
+
placeholder="Include any relevant context about dementia here to get better results.",
|
28 |
+
key="context"
|
29 |
+
)
|
30 |
+
|
31 |
+
if st.button("Get Answer"):
|
32 |
+
if not question:
|
33 |
+
st.error("Please enter a question!")
|
34 |
+
else:
|
35 |
+
# Call the QA pipeline
|
36 |
+
with st.spinner("Generating response..."):
|
37 |
+
result = qa_pipeline({
|
38 |
+
"question": question,
|
39 |
+
"context": st.session_state.context
|
40 |
+
})
|
41 |
+
answer = result.get("answer", "I don't know.")
|
42 |
+
confidence = result.get("score", 0.0)
|
43 |
+
|
44 |
+
# Display the result
|
45 |
+
st.subheader("Answer")
|
46 |
+
st.write(answer)
|
47 |
+
|
48 |
+
st.subheader("Confidence Score")
|
49 |
+
st.write(f"{confidence:.2f}")
|
50 |
+
|
51 |
+
# Footer
|
52 |
+
st.markdown("---")
|
53 |
+
st.markdown("Deployed on **Hugging Face Spaces** using [Streamlit](https://streamlit.io/).")
|