Spaces:
Sleeping
Sleeping
rogerxavier
commited on
Commit
•
239857b
1
Parent(s):
98e49c6
Update 0filterImage.py
Browse files- 0filterImage.py +188 -25
0filterImage.py
CHANGED
@@ -1,28 +1,182 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
import base64
|
5 |
-
import json
|
6 |
-
import os
|
7 |
-
from io import BytesIO
|
8 |
import pandas as pd
|
9 |
from PIL import Image
|
10 |
-
from
|
11 |
-
import
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
-
def get_nsfw_score(image_path:str,model:"模型")->float:
|
16 |
-
#输入图片和模型,返回是否有问题
|
17 |
-
img = Image.open(image_path)
|
18 |
-
result = model(images=img)
|
19 |
-
nsfw_score = next((item['score'] for item in result if item['label']=='nsfw'),None)
|
20 |
-
return nsfw_score
|
21 |
-
|
22 |
|
23 |
if __name__ == '__main__':
|
24 |
-
load_dotenv()
|
25 |
-
model = pipeline("image-classification", model="Falconsai/nsfw_image_detection")#加载模型
|
26 |
# 获取当前目录的子目录的路径
|
27 |
img_path = 'manga'
|
28 |
subdir_path = os.path.join(os.getcwd(), img_path)
|
@@ -34,11 +188,20 @@ if __name__ == '__main__':
|
|
34 |
if file.endswith(".jpg") or file.endswith(".png"):
|
35 |
image_files.append(os.path.relpath(os.path.join(root, file)))
|
36 |
for image_path in image_files:
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
os.remove(image_path)
|
|
|
41 |
else:
|
42 |
-
print(
|
43 |
-
|
44 |
-
|
|
|
1 |
+
import numpy as np
|
2 |
+
import os, re, cv2
|
3 |
+
from typing import *
|
|
|
|
|
|
|
|
|
4 |
import pandas as pd
|
5 |
from PIL import Image
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
from onnxruntime import InferenceSession
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
# noinspection PyUnresolvedReferences
|
12 |
+
def make_square(img, target_size):
|
13 |
+
old_size = img.shape[:2]
|
14 |
+
desired_size = max(old_size)
|
15 |
+
desired_size = max(desired_size, target_size)
|
16 |
+
|
17 |
+
delta_w = desired_size - old_size[1]
|
18 |
+
delta_h = desired_size - old_size[0]
|
19 |
+
top, bottom = delta_h // 2, delta_h - (delta_h // 2)
|
20 |
+
left, right = delta_w // 2, delta_w - (delta_w // 2)
|
21 |
+
|
22 |
+
color = [255, 255, 255]
|
23 |
+
return cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
|
24 |
+
|
25 |
+
|
26 |
+
# noinspection PyUnresolvedReferences
|
27 |
+
def smart_resize(img, size):
|
28 |
+
# Assumes the image has already gone through make_square
|
29 |
+
if img.shape[0] > size:
|
30 |
+
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
|
31 |
+
elif img.shape[0] < size:
|
32 |
+
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
|
33 |
+
else: # just do nothing
|
34 |
+
pass
|
35 |
+
|
36 |
+
return img
|
37 |
+
|
38 |
+
|
39 |
+
class WaifuDiffusionInterrogator:
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
repo='SmilingWolf/wd-v1-4-vit-tagger',
|
43 |
+
model_path='model.onnx',
|
44 |
+
tags_path='selected_tags.csv',
|
45 |
+
mode: str = "auto"
|
46 |
+
) -> None:
|
47 |
+
self.__repo = repo
|
48 |
+
self.__model_path = model_path
|
49 |
+
self.__tags_path = tags_path
|
50 |
+
self._provider_mode = mode
|
51 |
+
|
52 |
+
self.__initialized = False
|
53 |
+
self._model, self._tags = None, None
|
54 |
+
|
55 |
+
def _init(self) -> None:
|
56 |
+
if self.__initialized:
|
57 |
+
return
|
58 |
+
|
59 |
+
model_path = hf_hub_download(self.__repo, filename=self.__model_path)
|
60 |
+
tags_path = hf_hub_download(self.__repo, filename=self.__tags_path)
|
61 |
+
|
62 |
+
self._model = InferenceSession(str(model_path))
|
63 |
+
self._tags = pd.read_csv(tags_path)
|
64 |
+
|
65 |
+
self.__initialized = True
|
66 |
+
|
67 |
+
def _calculation(self, image: Image.Image) -> pd.DataFrame:
|
68 |
+
# print(image) todo: figure out what to do if URL
|
69 |
+
self._init()
|
70 |
+
|
71 |
+
# code for converting the image and running the model is taken from the link below
|
72 |
+
# thanks, SmilingWolf!
|
73 |
+
# https://huggingface.co/spaces/SmilingWolf/wd-v1-4-tags/blob/main/app.py
|
74 |
+
|
75 |
+
# convert an image to fit the model
|
76 |
+
_, height, _, _ = self._model.get_inputs()[0].shape
|
77 |
+
|
78 |
+
# alpha to white
|
79 |
+
print(image)
|
80 |
+
image = image.convert('RGBA')
|
81 |
+
new_image = Image.new('RGBA', image.size, 'WHITE')
|
82 |
+
new_image.paste(image, mask=image)
|
83 |
+
image = new_image.convert('RGB')
|
84 |
+
image = np.asarray(image)
|
85 |
+
|
86 |
+
# PIL RGB to OpenCV BGR
|
87 |
+
image = image[:, :, ::-1]
|
88 |
+
|
89 |
+
image = make_square(image, height)
|
90 |
+
image = smart_resize(image, height)
|
91 |
+
image = image.astype(np.float32)
|
92 |
+
image = np.expand_dims(image, 0)
|
93 |
+
|
94 |
+
# evaluate model
|
95 |
+
input_name = self._model.get_inputs()[0].name
|
96 |
+
label_name = self._model.get_outputs()[0].name
|
97 |
+
confidence = self._model.run([label_name], {input_name: image})[0]
|
98 |
+
|
99 |
+
full_tags = self._tags[['name', 'category']].copy()
|
100 |
+
full_tags['confidence'] = confidence[0]
|
101 |
+
|
102 |
+
return full_tags
|
103 |
+
|
104 |
+
def interrogate(self, image: Image) -> Tuple[Dict[str, float], Dict[str, float]]:
|
105 |
+
full_tags = self._calculation(image)
|
106 |
+
|
107 |
+
# first 4 items are for rating (general, sensitive, questionable, explicit)
|
108 |
+
ratings = dict(full_tags[full_tags['category'] == 9][['name', 'confidence']].values)
|
109 |
+
|
110 |
+
# rest are regular tags
|
111 |
+
tags = dict(full_tags[full_tags['category'] != 9][['name', 'confidence']].values)
|
112 |
+
|
113 |
+
return ratings, tags
|
114 |
+
|
115 |
+
|
116 |
+
WAIFU_MODELS: Mapping[str, WaifuDiffusionInterrogator] = {
|
117 |
+
'chen-vit': WaifuDiffusionInterrogator(),
|
118 |
+
'chen-convnext': WaifuDiffusionInterrogator(
|
119 |
+
repo='SmilingWolf/wd-v1-4-convnext-tagger'
|
120 |
+
),
|
121 |
+
'chen-convnext2': WaifuDiffusionInterrogator(
|
122 |
+
repo="SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
|
123 |
+
),
|
124 |
+
'chen-swinv2': WaifuDiffusionInterrogator(
|
125 |
+
repo='SmilingWolf/wd-v1-4-swinv2-tagger-v2'
|
126 |
+
),
|
127 |
+
'chen-moat2': WaifuDiffusionInterrogator(
|
128 |
+
repo='SmilingWolf/wd-v1-4-moat-tagger-v2'
|
129 |
+
),
|
130 |
+
'chen-convnext3': WaifuDiffusionInterrogator(
|
131 |
+
repo='SmilingWolf/wd-convnext-tagger-v3'
|
132 |
+
),
|
133 |
+
'chen-vit3': WaifuDiffusionInterrogator(
|
134 |
+
repo='SmilingWolf/wd-vit-tagger-v3'
|
135 |
+
),
|
136 |
+
'chen-swinv3': WaifuDiffusionInterrogator(
|
137 |
+
repo='SmilingWolf/wd-swinv2-tagger-v3'
|
138 |
+
),
|
139 |
+
}
|
140 |
+
RE_SPECIAL = re.compile(r'([\\()])')
|
141 |
+
|
142 |
+
|
143 |
+
def image_to_wd14_tags(image: Image.Image, model_name: str, threshold: float,
|
144 |
+
use_spaces: bool, use_escape: bool, include_ranks=False, score_descend=True) \
|
145 |
+
-> Tuple[Mapping[str, float], str, Mapping[str, float]]:
|
146 |
+
model = WAIFU_MODELS[model_name]
|
147 |
+
ratings, tags = model.interrogate(image)
|
148 |
+
|
149 |
+
filtered_tags = {
|
150 |
+
tag: score for tag, score in tags.items()
|
151 |
+
if score >= threshold
|
152 |
+
}
|
153 |
+
|
154 |
+
text_items = []
|
155 |
+
tags_pairs = filtered_tags.items()
|
156 |
+
if score_descend:
|
157 |
+
tags_pairs = sorted(tags_pairs, key=lambda x: (-x[1], x[0]))
|
158 |
+
for tag, score in tags_pairs:
|
159 |
+
tag_outformat = tag
|
160 |
+
if use_spaces:
|
161 |
+
tag_outformat = tag_outformat.replace('_', '-')
|
162 |
+
else:
|
163 |
+
tag_outformat = tag_outformat.replace(' ', ', ')
|
164 |
+
tag_outformat = tag_outformat.replace('_', ' ')
|
165 |
+
if use_escape:
|
166 |
+
tag_outformat = re.sub(RE_SPECIAL, r'\\\1', tag_outformat)
|
167 |
+
if include_ranks:
|
168 |
+
tag_outformat = f"({tag_outformat}:{score:.3f})"
|
169 |
+
text_items.append(tag_outformat)
|
170 |
+
if use_spaces:
|
171 |
+
output_text = ' '.join(text_items)
|
172 |
+
else:
|
173 |
+
output_text = ', '.join(text_items)
|
174 |
+
|
175 |
+
return ratings, output_text, filtered_tags
|
176 |
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
if __name__ == '__main__':
|
|
|
|
|
180 |
# 获取当前目录的子目录的路径
|
181 |
img_path = 'manga'
|
182 |
subdir_path = os.path.join(os.getcwd(), img_path)
|
|
|
188 |
if file.endswith(".jpg") or file.endswith(".png"):
|
189 |
image_files.append(os.path.relpath(os.path.join(root, file)))
|
190 |
for image_path in image_files:
|
191 |
+
# 打开并读取图像文件
|
192 |
+
image_data = Image.open(image_path)
|
193 |
+
result = image_to_wd14_tags(image_data, 'chen-moat2', 0.5, True, True)#传入数据判断标签,然后只看rating tag就行,即第[0]个
|
194 |
+
# 从 result 中提取第一个元素(rating)
|
195 |
+
rating_dict = result[0]
|
196 |
+
# 找到占比最大的元素
|
197 |
+
max_proportion_key = max(rating_dict, key=rating_dict.get)
|
198 |
+
max_proportion_value = rating_dict[max_proportion_key]
|
199 |
+
|
200 |
+
# 输出占比最大的元素
|
201 |
+
print(f"占比最大的元素为:{max_proportion_key},占比为:{max_proportion_value}")
|
202 |
+
if max_proportion_key=="questionable" or max_proportion_key=="explicit":
|
203 |
+
print("图片不合格,开始删除")
|
204 |
os.remove(image_path)
|
205 |
+
print("成功删除不合格图片")
|
206 |
else:
|
207 |
+
print("图片合格")
|
|
|
|