Spaces:
Paused
Paused
Commit
·
e8ae0c0
1
Parent(s):
f525e0b
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,104 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import AutoTokenizer
|
3 |
-
from auto_gptq import AutoGPTQForCausalLM
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
tokenizer = AutoTokenizer.from_pretrained(local_folder, use_fast=False)
|
32 |
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
from auto_gptq import AutoGPTQForCausalLM
|
4 |
+
import torch
|
5 |
+
import subprocess
|
6 |
+
import traceback
|
7 |
+
|
8 |
+
# Function to get memory info
|
9 |
+
def get_gpu_memory():
|
10 |
+
try:
|
11 |
+
result = subprocess.check_output(["nvidia-smi", "--query-gpu=memory.free,memory.total", "--format=csv,nounits,noheader"], text=True)
|
12 |
+
memory_info = [x.split(',') for x in result.strip().split('\n')]
|
13 |
+
memory_info = [{"free": int(x[0].strip()), "total": int(x[1].strip())} for x in memory_info]
|
14 |
+
except FileNotFoundError:
|
15 |
+
memory_info = [{"free": "N/A", "total": "N/A"}]
|
16 |
+
return memory_info
|
17 |
+
|
18 |
+
# Display GPU memory information before loading the model
|
19 |
+
gpu_memory_before = get_gpu_memory()
|
20 |
+
st.write(f"GPU Memory Info before loading the model: {gpu_memory_before}")
|
21 |
+
|
22 |
+
# Define pretrained model directory
|
23 |
+
pretrained_model_dir = "FPHam/Jackson_The_Formalizer_V2_13b_GPTQ"
|
24 |
+
|
25 |
+
# Check if CUDA is available and get the device
|
26 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
27 |
+
|
28 |
+
# Before allocating or loading the model, clear up memory if CUDA is available
|
29 |
+
if device == "cuda:0":
|
30 |
+
torch.cuda.empty_cache()
|
31 |
+
|
32 |
+
# Load tokenizer
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=False)
|
34 |
+
tokenizer.pad_token = tokenizer.eos_token # Ensure padding token is set correctly for the model
|
35 |
+
|
36 |
+
# Attempt to load the model, catch any OOM errors
|
37 |
+
@st.cache_resource
|
38 |
+
def load_gptq_model():
|
39 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
40 |
+
pretrained_model_dir,
|
41 |
+
model_basename="Jackson2-4bit-128g-GPTQ",
|
42 |
+
use_safetensors=True,
|
43 |
+
device=device,
|
44 |
+
disable_exllamav2=True
|
45 |
+
)
|
46 |
+
model.eval() # Set the model to inference mode
|
47 |
+
return model
|
48 |
+
|
49 |
+
model_loaded = False
|
50 |
+
# Attempt to load the model, catch any OOM errors
|
51 |
+
try:
|
52 |
+
model = load_gptq_model()
|
53 |
+
model_loaded = True
|
54 |
+
except RuntimeError as e:
|
55 |
+
if 'CUDA out of memory' in str(e):
|
56 |
+
st.error("CUDA out of memory while loading the model. Try reducing the model size or restarting the app.")
|
57 |
+
st.stop()
|
58 |
+
else:
|
59 |
+
raise e
|
60 |
+
|
61 |
+
if model_loaded:
|
62 |
+
# Display GPU memory information after loading the model
|
63 |
+
gpu_memory_after = get_gpu_memory()
|
64 |
+
st.write(f"GPU Memory Info after loading the model: {gpu_memory_after}")
|
65 |
+
|
66 |
+
col1, col2 = st.columns(2)
|
67 |
+
with col1:
|
68 |
+
user_input = st.text_input("Input a phrase")
|
69 |
+
with col2:
|
70 |
+
max_token = st.number_input(label="Select max number of generated tokens", min_value=1, max_value=512, value=50, step=5)
|
71 |
+
|
72 |
+
# Generate button
|
73 |
+
if st.button("Generate the prompt"):
|
74 |
+
try:
|
75 |
+
prompt_template = f'USER: {user_input}\nASSISTANT:'
|
76 |
+
inputs = tokenizer(prompt_template, return_tensors='pt', max_length=512, truncation=True, padding='max_length')
|
77 |
+
inputs = inputs.to(device) # Move inputs to the same device as model
|
78 |
+
# Generate text using torch.inference_mode for better performance during inference
|
79 |
+
with torch.inference_mode():
|
80 |
+
output = model.generate(**inputs, max_new_tokens=max_token)
|
81 |
+
|
82 |
+
# Cut the tokens at the input length to display only the generated text
|
83 |
+
output_ids_cut = output[:, inputs["input_ids"].shape[1]:]
|
84 |
+
generated_text = tokenizer.decode(output_ids_cut[0], skip_special_tokens=True)
|
85 |
+
|
86 |
+
st.markdown(f"**Generated Text:**\n{generated_text}")
|
87 |
+
except RuntimeError as e:
|
88 |
+
if 'CUDA out of memory' in str(e):
|
89 |
+
st.error("CUDA out of memory during generation. Try reducing the input length or restarting the app.")
|
90 |
+
# Log the detailed error message
|
91 |
+
with open('error_log.txt', 'a') as f:
|
92 |
+
f.write(traceback.format_exc())
|
93 |
+
else:
|
94 |
+
# Log the error and re-raise it
|
95 |
+
with open('error_log.txt', 'a') as f:
|
96 |
+
f.write(traceback.format_exc())
|
97 |
+
raise e
|
98 |
+
|
99 |
+
# Display GPU memory information after generation
|
100 |
+
gpu_memory_after_generation = get_gpu_memory()
|
101 |
+
st.write(f"GPU Memory Info after generation: {gpu_memory_after_generation}")
|
102 |
|
103 |
tokenizer = AutoTokenizer.from_pretrained(local_folder, use_fast=False)
|
104 |
|