rodrigomasini's picture
Update src/leaderboard.py
cd9a950 verified
raw
history blame
2.5 kB
import gradio as gr
from src.utils import model_hyperlink, process_score
LEADERBOARD_COLUMN_TO_DATATYPE = {
# open llm
"Model πŸ€—" :"str",
"Arch πŸ›οΈ" :"str",
"Params (B)": "number",
"Open LLM Score (%)": "number",
# deployment settings
"DType πŸ“₯" :"str",
"Backend 🏭" :"str",
"Optimization πŸ› οΈ" :"str",
"Quantization πŸ—œοΈ" :"str",
# primary measurements
"Prefill Latency (s)": "number",
"Decode Throughput (tokens/s)": "number",
"Allocated Memory (MB)": "number",
"Energy (tokens/kWh)": "number",
# additional measurements
"E2E Latency (s)": "number",
"E2E Throughput (tokens/s)": "number",
"Reserved Memory (MB)": "number",
"Used Memory (MB)": "number",
}
from dataclasses import dataclass
@dataclass
class LeaderboardColumn:
name: str
type: str
LEADERBOARD_COLUMNS = [
LeaderboardColumn("Model πŸ€—", "str"),
LeaderboardColumn("Arch πŸ›οΈ", "str"),
LeaderboardColumn("Params (B)", "number"),
LeaderboardColumn("Open LLM Score (%)", "number"),
LeaderboardColumn("DType πŸ“₯", "str"),
LeaderboardColumn("Backend 🏭", "str"),
LeaderboardColumn("Optimization πŸ› οΈ", "str"),
LeaderboardColumn("Quantization πŸ—œοΈ", "str"),
LeaderboardColumn("Prefill Latency (s)", "number"),
LeaderboardColumn("Decode Throughput (tokens/s)", "number"),
LeaderboardColumn("Allocated Memory (MB)", "number"),
LeaderboardColumn("Energy (tokens/kWh)", "number"),
LeaderboardColumn("E2E Latency (s)", "number"),
LeaderboardColumn("E2E Throughput (tokens/s)", "number"),
LeaderboardColumn("Reserved Memory (MB)", "number"),
LeaderboardColumn( "Used Memory (MB)", "number")
]
def process_model(model_name):
link = f"https://huggingface.co/{model_name}"
return model_hyperlink(link, model_name)
def get_leaderboard_df(llm_perf_df):
df = llm_perf_df.copy()
# transform for leaderboard
df["Model πŸ€—"] = df["Model πŸ€—"].apply(process_model)
# process quantization for leaderboard
df["Open LLM Score (%)"] = df.apply(
lambda x: process_score(x["Open LLM Score (%)"], x["Quantization πŸ—œοΈ"]),
axis=1,
)
return df
COLS = [col.name for col in LEADERBOARD_COLUMNS]
TYPES = [col.type for col in LEADERBOARD_COLUMNS]
def create_leaderboard_table(llm_perf_df):
# get dataframe
leaderboard_df = get_leaderboard_df(llm_perf_df)
print(leaderboard_df)
return leaderboard_df