Spaces:
Runtime error
Runtime error
import os | |
from apscheduler.schedulers.background import BackgroundScheduler | |
import gradio as gr | |
import pandas as pd | |
from src.control_panel import create_control_panel, create_control_callback | |
from src.leaderboard import ( | |
create_leaderboard_table, | |
COLS, | |
TYPES, | |
) | |
from src.llm_perf import get_llm_perf_df | |
from src.content import ( | |
LOGO, | |
TITLE, | |
ABOUT, | |
INTRODUCTION, | |
EXAMPLE_CONFIG, | |
CITATION_BUTTON, | |
CITATION_BUTTON_LABEL, | |
) | |
MACHINE_TO_HARDWARE = {"hf-dgx-01": "A100-80GB-275W 🖥️", "audace": "RTX4090-24GB-450W 💻"} | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID, token=HF_TOKEN) | |
import unicodedata | |
def is_valid_unicode(char): | |
try: | |
unicodedata.name(char) | |
return True # Valid Unicode character | |
except ValueError: | |
return False # Invalid Unicode character | |
def remove_invalid_unicode(input_string): | |
if isinstance(input_string, str): | |
valid_chars = [char for char in input_string if is_valid_unicode(char)] | |
return ''.join(valid_chars) | |
else: | |
return input_string # Return non-string values as is | |
def preprocess_dataframe(df): | |
# Apply the `remove_invalid_unicode` function to all string columns | |
for column in df.columns: | |
if df[column].dtype == 'object': # Checking for string columns | |
df[column] = df[column].apply(remove_invalid_unicode) | |
return df | |
# Fetch and preprocess the leaderboard DataFrame | |
llm_perf_df = get_llm_perf_df() | |
llm_perf_df = preprocess_dataframe(llm_perf_df) | |
# Create the leaderboard table | |
leaderboard_table = create_leaderboard_table(llm_perf_df) | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
leaderboard_table, | |
headers=COLS, | |
datatype=TYPES, | |
visible=False, | |
line_breaks=False, | |
interactive=False | |
) | |
def display(x, y): | |
# Assuming df is your DataFrame | |
for column in leaderboard_table.columns: | |
if leaderboard_table[column].dtype == 'object': | |
leaderboard_table[column] = leaderboard_table[column].apply(remove_invalid_unicode) | |
subset_df = leaderboard_table[COLS] | |
return subset_df | |
dummy1 = gr.Textbox(visible=False) | |
INTRODUCTION_TEXT = """ | |
This is a copied space from LLM Trustworthy Leaderboard. Instead of displaying | |
the results as table this space was modified to simply provides a gradio API interface. | |
Using the following python script below, users can access the full leaderboard data easily. | |
Python on how to access the data: | |
```python | |
# Import dependencies | |
from gradio_client import Client | |
# Initialize the Gradio client with the API URL | |
client = Client("https://rodrigomasini-data-only-llm-perf-leaderboard.hf.space/") | |
try: | |
# Perform the API call | |
response = client.predict("","", api_name='/predict') | |
# Check if response it's directly accessible | |
if len(response) > 0: | |
print("Response received!") | |
headers = response.get('headers', []) | |
data = response.get('data', []) | |
print(headers) | |
# Remove commenst if you want to download the dataset and save in csv format | |
# Specify the path to your CSV file | |
#csv_file_path = 'llm-perf-benchmark.csv' | |
# Open the CSV file for writing | |
#with open(csv_file_path, mode='w', newline='', encoding='utf-8') as file: | |
# writer = csv.writer(file) | |
# Write the headers | |
# writer.writerow(headers) | |
# Write the data | |
# for row in data: | |
# writer.writerow(row) | |
#print(f"Results saved to {csv_file_path}") | |
# If the above line prints a string that looks like JSON, you can parse it with json.loads(response) | |
# Otherwise, you might need to adjust based on the actual structure of `response` | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
``` | |
""" | |
interface = gr.Interface( | |
fn=display, | |
inputs=[gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text"), dummy1], | |
outputs=[hidden_leaderboard_table_for_search] | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
interface.launch() |