Spaces:
Runtime error
Runtime error
import glob | |
import json | |
from dataclasses import dataclass | |
from typing import Optional | |
from huggingface_hub import HfApi, snapshot_download | |
from src.utils import my_snapshot_download | |
class EvalRequest: | |
model: str | |
private: bool | |
status: str | |
json_filepath: str | |
weight_type: str = "Original" | |
model_type: str = "" # pretrained, finetuned, with RL | |
precision: str = "" # float16, bfloat16 | |
base_model: Optional[str] = None # for adapter models | |
revision: str = "main" # commit | |
submitted_time: Optional[str] = "2022-05-18T11:40:22.519222" # random date just so that we can still order requests by date | |
model_type: Optional[str] = None | |
likes: Optional[int] = 0 | |
params: Optional[int] = None | |
license: Optional[str] = "" | |
def get_model_args(self) -> str: | |
model_args = f"pretrained={self.model},revision={self.revision},parallelize=True" # ,max_length=4096" | |
if self.precision in ["float16", "float32", "bfloat16"]: | |
model_args += f",dtype={self.precision}" | |
# Quantized models need some added config, the install of bits and bytes, etc | |
#elif self.precision == "8bit": | |
# model_args += ",load_in_8bit=True" | |
#elif self.precision == "4bit": | |
# model_args += ",load_in_4bit=True" | |
#elif self.precision == "GPTQ": | |
# A GPTQ model does not need dtype to be specified, | |
# it will be inferred from the config | |
pass | |
else: | |
raise Exception(f"Unknown precision {self.precision}.") | |
return model_args | |
def set_eval_request(api: HfApi, eval_request: EvalRequest, set_to_status: str, hf_repo: str, local_dir: str): | |
"""Updates a given eval request with its new status on the hub (running, completed, failed, ...)""" | |
json_filepath = eval_request.json_filepath | |
with open(json_filepath) as fp: | |
data = json.load(fp) | |
data["status"] = set_to_status | |
with open(json_filepath, "w") as f: | |
f.write(json.dumps(data)) | |
api.upload_file(path_or_fileobj=json_filepath, path_in_repo=json_filepath.replace(local_dir, ""), | |
repo_id=hf_repo, repo_type="dataset") | |
def get_eval_requests(job_status: list, local_dir: str, hf_repo: str) -> list[EvalRequest]: | |
"""Get all pending evaluation requests and return a list in which private | |
models appearing first, followed by public models sorted by the number of | |
likes. | |
Returns: | |
`list[EvalRequest]`: a list of model info dicts. | |
""" | |
my_snapshot_download(repo_id=hf_repo, revision="main", local_dir=local_dir, repo_type="dataset", max_workers=60) | |
json_files = glob.glob(f"{local_dir}/**/*.json", recursive=True) | |
eval_requests = [] | |
for json_filepath in json_files: | |
with open(json_filepath) as fp: | |
data = json.load(fp) | |
if data["status"] in job_status: | |
# import pdb | |
# breakpoint() | |
data["json_filepath"] = json_filepath | |
if 'job_id' in data: | |
del data['job_id'] | |
eval_request = EvalRequest(**data) | |
eval_requests.append(eval_request) | |
return eval_requests | |
def check_completed_evals(api: HfApi, hf_repo: str, local_dir: str, checked_status: str, completed_status: str, | |
failed_status: str, hf_repo_results: str, local_dir_results: str): | |
"""Checks if the currently running evals are completed, if yes, update their status on the hub.""" | |
my_snapshot_download(repo_id=hf_repo_results, revision="main", local_dir=local_dir_results, repo_type="dataset", max_workers=60) | |
running_evals = get_eval_requests([checked_status], hf_repo=hf_repo, local_dir=local_dir) | |
for eval_request in running_evals: | |
model = eval_request.model | |
print("====================================") | |
print(f"Checking {model}") | |
output_path = model | |
output_file = f"{local_dir_results}/{output_path}/results*.json" | |
output_file_exists = len(glob.glob(output_file)) > 0 | |
if output_file_exists: | |
print(f"EXISTS output file exists for {model} setting it to {completed_status}") | |
set_eval_request(api, eval_request, completed_status, hf_repo, local_dir) | |