rodrigomasini
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -134,216 +134,90 @@ def filter_models(
|
|
134 |
return filtered_df
|
135 |
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
with gr.Row():
|
145 |
-
with gr.Column():
|
146 |
-
with gr.Row():
|
147 |
-
search_bar = gr.Textbox(
|
148 |
-
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
149 |
-
show_label=False,
|
150 |
-
elem_id="search-bar",
|
151 |
-
)
|
152 |
-
with gr.Row():
|
153 |
-
shown_columns = gr.CheckboxGroup(
|
154 |
-
choices=[
|
155 |
-
c.name
|
156 |
-
for c in fields(AutoEvalColumn)
|
157 |
-
if not c.hidden and not c.never_hidden and not c.dummy
|
158 |
-
],
|
159 |
-
value=[
|
160 |
-
c.name
|
161 |
-
for c in fields(AutoEvalColumn)
|
162 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
163 |
-
],
|
164 |
-
label="Select columns to show",
|
165 |
-
elem_id="column-select",
|
166 |
-
interactive=True,
|
167 |
-
)
|
168 |
-
with gr.Row():
|
169 |
-
deleted_models_visibility = gr.Checkbox(
|
170 |
-
value=False, label="Show gated/private/deleted models", interactive=True
|
171 |
-
)
|
172 |
-
with gr.Column(min_width=320):
|
173 |
-
#with gr.Box(elem_id="box-filter"):
|
174 |
-
filter_columns_type = gr.CheckboxGroup(
|
175 |
-
label="Model types",
|
176 |
-
choices=[t.to_str() for t in ModelType],
|
177 |
-
value=[t.to_str() for t in ModelType],
|
178 |
-
interactive=True,
|
179 |
-
elem_id="filter-columns-type",
|
180 |
-
)
|
181 |
-
filter_columns_precision = gr.CheckboxGroup(
|
182 |
-
label="Precision",
|
183 |
-
choices=[i.value.name for i in Precision],
|
184 |
-
value=[i.value.name for i in Precision],
|
185 |
-
interactive=True,
|
186 |
-
elem_id="filter-columns-precision",
|
187 |
-
)
|
188 |
-
filter_columns_size = gr.CheckboxGroup(
|
189 |
-
label="Model sizes (in billions of parameters)",
|
190 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
191 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
192 |
-
interactive=True,
|
193 |
-
elem_id="filter-columns-size",
|
194 |
-
)
|
195 |
-
|
196 |
-
leaderboard_table = gr.components.Dataframe(
|
197 |
-
value=leaderboard_df[
|
198 |
-
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
199 |
-
+ shown_columns.value
|
200 |
-
+ [AutoEvalColumn.dummy.name]
|
201 |
-
],
|
202 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
203 |
-
datatype=TYPES,
|
204 |
-
elem_id="leaderboard-table",
|
205 |
-
interactive=False,
|
206 |
-
visible=True,
|
207 |
-
column_widths=["2%", "33%"]
|
208 |
-
)
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
shown_columns,
|
236 |
-
filter_columns_type,
|
237 |
-
filter_columns_precision,
|
238 |
-
filter_columns_size,
|
239 |
-
deleted_models_visibility,
|
240 |
-
search_bar,
|
241 |
-
],
|
242 |
-
leaderboard_table,
|
243 |
-
queue=True,
|
244 |
-
)
|
245 |
-
|
246 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
247 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
248 |
-
|
249 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
250 |
-
with gr.Column():
|
251 |
-
with gr.Row():
|
252 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
253 |
-
|
254 |
-
with gr.Column():
|
255 |
-
with gr.Accordion(
|
256 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
257 |
-
open=False,
|
258 |
-
):
|
259 |
-
with gr.Row():
|
260 |
-
finished_eval_table = gr.components.Dataframe(
|
261 |
-
value=finished_eval_queue_df,
|
262 |
-
headers=EVAL_COLS,
|
263 |
-
datatype=EVAL_TYPES,
|
264 |
-
row_count=5,
|
265 |
-
)
|
266 |
-
with gr.Accordion(
|
267 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
268 |
-
open=False,
|
269 |
-
):
|
270 |
-
with gr.Row():
|
271 |
-
running_eval_table = gr.components.Dataframe(
|
272 |
-
value=running_eval_queue_df,
|
273 |
-
headers=EVAL_COLS,
|
274 |
-
datatype=EVAL_TYPES,
|
275 |
-
row_count=5,
|
276 |
-
)
|
277 |
-
|
278 |
-
with gr.Accordion(
|
279 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
280 |
-
open=False,
|
281 |
-
):
|
282 |
-
with gr.Row():
|
283 |
-
pending_eval_table = gr.components.Dataframe(
|
284 |
-
value=pending_eval_queue_df,
|
285 |
-
headers=EVAL_COLS,
|
286 |
-
datatype=EVAL_TYPES,
|
287 |
-
row_count=5,
|
288 |
-
)
|
289 |
-
with gr.Row():
|
290 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
291 |
-
|
292 |
-
with gr.Row():
|
293 |
-
with gr.Column():
|
294 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
295 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
296 |
-
model_type = gr.Dropdown(
|
297 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
298 |
-
label="Model type",
|
299 |
-
multiselect=False,
|
300 |
-
value=None,
|
301 |
-
interactive=True,
|
302 |
-
)
|
303 |
-
|
304 |
-
with gr.Column():
|
305 |
-
precision = gr.Dropdown(
|
306 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
307 |
-
label="Precision",
|
308 |
-
multiselect=False,
|
309 |
-
value="float16",
|
310 |
-
interactive=True,
|
311 |
-
)
|
312 |
-
weight_type = gr.Dropdown(
|
313 |
-
choices=[i.value.name for i in WeightType],
|
314 |
-
label="Weights type",
|
315 |
-
multiselect=False,
|
316 |
-
value="Original",
|
317 |
-
interactive=True,
|
318 |
-
)
|
319 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
320 |
-
|
321 |
-
submit_button = gr.Button("Submit Eval")
|
322 |
-
submission_result = gr.Markdown()
|
323 |
-
submit_button.click(
|
324 |
-
add_new_eval,
|
325 |
-
[
|
326 |
-
model_name_textbox,
|
327 |
-
base_model_name_textbox,
|
328 |
-
revision_name_textbox,
|
329 |
-
precision,
|
330 |
-
weight_type,
|
331 |
-
model_type,
|
332 |
-
],
|
333 |
-
submission_result,
|
334 |
-
)
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
346 |
-
scheduler = BackgroundScheduler()
|
347 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
348 |
scheduler.start()
|
349 |
-
|
|
|
|
134 |
return filtered_df
|
135 |
|
136 |
|
137 |
+
leaderboard_df = filter_models(
|
138 |
+
df=leaderboard_df,
|
139 |
+
type_query=[t.to_str(" : ") for t in ModelType],
|
140 |
+
size_query=list(NUMERIC_INTERVALS.keys()),
|
141 |
+
precision_query=[i.value.name for i in Precision],
|
142 |
+
show_deleted=False,
|
143 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
+
import unicodedata
|
146 |
+
|
147 |
+
def is_valid_unicode(char):
|
148 |
+
try:
|
149 |
+
unicodedata.name(char)
|
150 |
+
return True # Valid Unicode character
|
151 |
+
except ValueError:
|
152 |
+
return False # Invalid Unicode character
|
153 |
+
|
154 |
+
def remove_invalid_unicode(input_string):
|
155 |
+
if isinstance(input_string, str):
|
156 |
+
valid_chars = [char for char in input_string if is_valid_unicode(char)]
|
157 |
+
return ''.join(valid_chars)
|
158 |
+
else:
|
159 |
+
return input_string # Return non-string values as is
|
160 |
+
|
161 |
+
dummy1 = gr.Textbox(visible=False)
|
162 |
+
|
163 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
164 |
+
headers=COLS,
|
165 |
+
datatype=TYPES,
|
166 |
+
visible=False,
|
167 |
+
line_breaks=False,
|
168 |
+
interactive=False
|
169 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
def display(x, y):
|
172 |
+
# Assuming df is your DataFrame
|
173 |
+
for column in leaderboard_df.columns:
|
174 |
+
if leaderboard_df[column].dtype == 'object':
|
175 |
+
leaderboard_df[column] = leaderboard_df[column].apply(remove_invalid_unicode)
|
176 |
+
|
177 |
+
subset_df = leaderboard_df[COLS]
|
178 |
+
# Ensure the output directory exists
|
179 |
+
#output_dir = 'output'
|
180 |
+
#if not os.path.exists(output_dir):
|
181 |
+
# os.makedirs(output_dir)
|
182 |
+
#
|
183 |
+
## Save JSON to a file in the output directory
|
184 |
+
#output_file_path = os.path.join(output_dir, 'output.json')
|
185 |
+
#with open(output_file_path, 'w') as file:
|
186 |
+
# file.write(subset_df.to_json(orient='records'))
|
187 |
+
|
188 |
+
#first_50_rows = subset_df.head(50)
|
189 |
+
#print(first_50_rows.to_string())
|
190 |
+
#json_data = first_50_rows.to_json(orient='records')
|
191 |
+
#print(json_data) # Print JSON representation
|
192 |
+
return subset_df
|
193 |
+
|
194 |
+
INTRODUCTION_TEXT = """
|
195 |
+
This is a copied space from Open Source LLM leaderboard. Instead of displaying
|
196 |
+
the results as table the space simply provides a gradio API interface to access
|
197 |
+
the full leaderboard data easily.
|
198 |
+
Example python on how to access the data:
|
199 |
+
```python
|
200 |
+
from gradio_client import Client
|
201 |
+
import json
|
202 |
+
client = Client("https://felixz-open-llm-leaderboard.hf.space/")
|
203 |
+
json_data = client.predict("","", api_name='/predict')
|
204 |
+
with open(json_data, 'r') as file:
|
205 |
+
file_data = file.read()
|
206 |
+
# Load the JSON data
|
207 |
+
data = json.loads(file_data)
|
208 |
+
# Get the headers and the data
|
209 |
+
headers = data['headers']
|
210 |
+
data = data['data']
|
211 |
+
```
|
212 |
+
"""
|
213 |
+
|
214 |
+
interface = gr.Interface(
|
215 |
+
fn=display,
|
216 |
+
inputs=[gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text"), dummy1],
|
217 |
+
outputs=[hidden_leaderboard_table_for_search]
|
218 |
+
)
|
219 |
|
|
|
220 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
221 |
scheduler.start()
|
222 |
+
|
223 |
+
interface.launch()scheduler = BackgroundScheduler()
|