feat: whisper使用开源模型
Browse files
main.py
CHANGED
@@ -102,22 +102,22 @@ def predict(input, history=[]):
|
|
102 |
return responses, video_html, history
|
103 |
|
104 |
|
105 |
-
# 通过openai whisper 语音识别
|
106 |
-
# def transcribe(audio):
|
107 |
-
# os.rename(audio, audio + '.wav')
|
108 |
-
# audio_file = open(audio + '.wav', "rb")
|
109 |
-
# transcript = openai.Audio.transcribe(
|
110 |
-
# "whisper-1", audio_file, prompt="这是一段简体中文的问题。")
|
111 |
-
# return transcript['text']
|
112 |
-
|
113 |
-
|
114 |
# 通过openai whisper 语音识别
|
115 |
def transcribe(audio):
|
116 |
os.rename(audio, audio + '.wav')
|
117 |
audio_file = open(audio + '.wav', "rb")
|
118 |
-
|
119 |
-
|
120 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
|
123 |
def process_audio(audio, history=[]):
|
|
|
102 |
return responses, video_html, history
|
103 |
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
# 通过openai whisper 语音识别
|
106 |
def transcribe(audio):
|
107 |
os.rename(audio, audio + '.wav')
|
108 |
audio_file = open(audio + '.wav', "rb")
|
109 |
+
transcript = openai.Audio.transcribe(
|
110 |
+
"whisper-1", audio_file, prompt="这是一段简体中文的问题。")
|
111 |
+
return transcript['text']
|
112 |
+
|
113 |
+
|
114 |
+
# 通过openai whisper 语音识别
|
115 |
+
# def transcribe(audio):
|
116 |
+
# os.rename(audio, audio + '.wav')
|
117 |
+
# audio_file = open(audio + '.wav', "rb")
|
118 |
+
# transcriber = pipeline(model="openai/whisper-medium", device=0)
|
119 |
+
# result = transcriber(audio_file)
|
120 |
+
# return result['text']
|
121 |
|
122 |
|
123 |
def process_audio(audio, history=[]):
|