RockeyCoss
add code files”
51f6859
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import Linear, bias_init_with_prob, constant_init
from mmcv.runner import force_fp32
from mmdet.core import multi_apply
from mmdet.models.utils.transformer import inverse_sigmoid
from ..builder import HEADS
from .detr_head import DETRHead
@HEADS.register_module()
class DeformableDETRHead(DETRHead):
"""Head of DeformDETR: Deformable DETR: Deformable Transformers for End-to-
End Object Detection.
Code is modified from the `official github repo
<https://github.com/fundamentalvision/Deformable-DETR>`_.
More details can be found in the `paper
<https://arxiv.org/abs/2010.04159>`_ .
Args:
with_box_refine (bool): Whether to refine the reference points
in the decoder. Defaults to False.
as_two_stage (bool) : Whether to generate the proposal from
the outputs of encoder.
transformer (obj:`ConfigDict`): ConfigDict is used for building
the Encoder and Decoder.
"""
def __init__(self,
*args,
with_box_refine=False,
as_two_stage=False,
transformer=None,
**kwargs):
self.with_box_refine = with_box_refine
self.as_two_stage = as_two_stage
if self.as_two_stage:
transformer['as_two_stage'] = self.as_two_stage
super(DeformableDETRHead, self).__init__(
*args, transformer=transformer, **kwargs)
def _init_layers(self):
"""Initialize classification branch and regression branch of head."""
fc_cls = Linear(self.embed_dims, self.cls_out_channels)
reg_branch = []
for _ in range(self.num_reg_fcs):
reg_branch.append(Linear(self.embed_dims, self.embed_dims))
reg_branch.append(nn.ReLU())
reg_branch.append(Linear(self.embed_dims, 4))
reg_branch = nn.Sequential(*reg_branch)
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
# last reg_branch is used to generate proposal from
# encode feature map when as_two_stage is True.
num_pred = (self.transformer.decoder.num_layers + 1) if \
self.as_two_stage else self.transformer.decoder.num_layers
if self.with_box_refine:
self.cls_branches = _get_clones(fc_cls, num_pred)
self.reg_branches = _get_clones(reg_branch, num_pred)
else:
self.cls_branches = nn.ModuleList(
[fc_cls for _ in range(num_pred)])
self.reg_branches = nn.ModuleList(
[reg_branch for _ in range(num_pred)])
if not self.as_two_stage:
self.query_embedding = nn.Embedding(self.num_query,
self.embed_dims * 2)
def init_weights(self):
"""Initialize weights of the DeformDETR head."""
self.transformer.init_weights()
if self.loss_cls.use_sigmoid:
bias_init = bias_init_with_prob(0.01)
for m in self.cls_branches:
nn.init.constant_(m.bias, bias_init)
for m in self.reg_branches:
constant_init(m[-1], 0, bias=0)
nn.init.constant_(self.reg_branches[0][-1].bias.data[2:], -2.0)
if self.as_two_stage:
for m in self.reg_branches:
nn.init.constant_(m[-1].bias.data[2:], 0.0)
def forward(self, mlvl_feats, img_metas):
"""Forward function.
Args:
mlvl_feats (tuple[Tensor]): Features from the upstream
network, each is a 4D-tensor with shape
(N, C, H, W).
img_metas (list[dict]): List of image information.
Returns:
all_cls_scores (Tensor): Outputs from the classification head, \
shape [nb_dec, bs, num_query, cls_out_channels]. Note \
cls_out_channels should includes background.
all_bbox_preds (Tensor): Sigmoid outputs from the regression \
head with normalized coordinate format (cx, cy, w, h). \
Shape [nb_dec, bs, num_query, 4].
enc_outputs_class (Tensor): The score of each point on encode \
feature map, has shape (N, h*w, num_class). Only when \
as_two_stage is True it would be returned, otherwise \
`None` would be returned.
enc_outputs_coord (Tensor): The proposal generate from the \
encode feature map, has shape (N, h*w, 4). Only when \
as_two_stage is True it would be returned, otherwise \
`None` would be returned.
"""
batch_size = mlvl_feats[0].size(0)
input_img_h, input_img_w = img_metas[0]['batch_input_shape']
img_masks = mlvl_feats[0].new_ones(
(batch_size, input_img_h, input_img_w))
for img_id in range(batch_size):
img_h, img_w, _ = img_metas[img_id]['img_shape']
img_masks[img_id, :img_h, :img_w] = 0
mlvl_masks = []
mlvl_positional_encodings = []
for feat in mlvl_feats:
mlvl_masks.append(
F.interpolate(img_masks[None],
size=feat.shape[-2:]).to(torch.bool).squeeze(0))
mlvl_positional_encodings.append(
self.positional_encoding(mlvl_masks[-1]))
query_embeds = None
if not self.as_two_stage:
query_embeds = self.query_embedding.weight
hs, init_reference, inter_references, \
enc_outputs_class, enc_outputs_coord = self.transformer(
mlvl_feats,
mlvl_masks,
query_embeds,
mlvl_positional_encodings,
reg_branches=self.reg_branches if self.with_box_refine else None, # noqa:E501
cls_branches=self.cls_branches if self.as_two_stage else None # noqa:E501
)
hs = hs.permute(0, 2, 1, 3)
outputs_classes = []
outputs_coords = []
for lvl in range(hs.shape[0]):
if lvl == 0:
reference = init_reference
else:
reference = inter_references[lvl - 1]
reference = inverse_sigmoid(reference)
outputs_class = self.cls_branches[lvl](hs[lvl])
tmp = self.reg_branches[lvl](hs[lvl])
if reference.shape[-1] == 4:
tmp += reference
else:
assert reference.shape[-1] == 2
tmp[..., :2] += reference
outputs_coord = tmp.sigmoid()
outputs_classes.append(outputs_class)
outputs_coords.append(outputs_coord)
outputs_classes = torch.stack(outputs_classes)
outputs_coords = torch.stack(outputs_coords)
if self.as_two_stage:
return outputs_classes, outputs_coords, \
enc_outputs_class, \
enc_outputs_coord.sigmoid()
else:
return outputs_classes, outputs_coords, \
None, None
@force_fp32(apply_to=('all_cls_scores', 'all_bbox_preds'))
def loss(self,
all_cls_scores,
all_bbox_preds,
enc_cls_scores,
enc_bbox_preds,
gt_bboxes_list,
gt_labels_list,
img_metas,
gt_bboxes_ignore=None):
""""Loss function.
Args:
all_cls_scores (Tensor): Classification score of all
decoder layers, has shape
[nb_dec, bs, num_query, cls_out_channels].
all_bbox_preds (Tensor): Sigmoid regression
outputs of all decode layers. Each is a 4D-tensor with
normalized coordinate format (cx, cy, w, h) and shape
[nb_dec, bs, num_query, 4].
enc_cls_scores (Tensor): Classification scores of
points on encode feature map , has shape
(N, h*w, num_classes). Only be passed when as_two_stage is
True, otherwise is None.
enc_bbox_preds (Tensor): Regression results of each points
on the encode feature map, has shape (N, h*w, 4). Only be
passed when as_two_stage is True, otherwise is None.
gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels_list (list[Tensor]): Ground truth class indices for each
image with shape (num_gts, ).
img_metas (list[dict]): List of image meta information.
gt_bboxes_ignore (list[Tensor], optional): Bounding boxes
which can be ignored for each image. Default None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert gt_bboxes_ignore is None, \
f'{self.__class__.__name__} only supports ' \
f'for gt_bboxes_ignore setting to None.'
num_dec_layers = len(all_cls_scores)
all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)]
all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)]
all_gt_bboxes_ignore_list = [
gt_bboxes_ignore for _ in range(num_dec_layers)
]
img_metas_list = [img_metas for _ in range(num_dec_layers)]
losses_cls, losses_bbox, losses_iou = multi_apply(
self.loss_single, all_cls_scores, all_bbox_preds,
all_gt_bboxes_list, all_gt_labels_list, img_metas_list,
all_gt_bboxes_ignore_list)
loss_dict = dict()
# loss of proposal generated from encode feature map.
if enc_cls_scores is not None:
binary_labels_list = [
torch.zeros_like(gt_labels_list[i])
for i in range(len(img_metas))
]
enc_loss_cls, enc_losses_bbox, enc_losses_iou = \
self.loss_single(enc_cls_scores, enc_bbox_preds,
gt_bboxes_list, binary_labels_list,
img_metas, gt_bboxes_ignore)
loss_dict['enc_loss_cls'] = enc_loss_cls
loss_dict['enc_loss_bbox'] = enc_losses_bbox
loss_dict['enc_loss_iou'] = enc_losses_iou
# loss from the last decoder layer
loss_dict['loss_cls'] = losses_cls[-1]
loss_dict['loss_bbox'] = losses_bbox[-1]
loss_dict['loss_iou'] = losses_iou[-1]
# loss from other decoder layers
num_dec_layer = 0
for loss_cls_i, loss_bbox_i, loss_iou_i in zip(losses_cls[:-1],
losses_bbox[:-1],
losses_iou[:-1]):
loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i
loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i
num_dec_layer += 1
return loss_dict
@force_fp32(apply_to=('all_cls_scores', 'all_bbox_preds'))
def get_bboxes(self,
all_cls_scores,
all_bbox_preds,
enc_cls_scores,
enc_bbox_preds,
img_metas,
rescale=False):
"""Transform network outputs for a batch into bbox predictions.
Args:
all_cls_scores (Tensor): Classification score of all
decoder layers, has shape
[nb_dec, bs, num_query, cls_out_channels].
all_bbox_preds (Tensor): Sigmoid regression
outputs of all decode layers. Each is a 4D-tensor with
normalized coordinate format (cx, cy, w, h) and shape
[nb_dec, bs, num_query, 4].
enc_cls_scores (Tensor): Classification scores of
points on encode feature map , has shape
(N, h*w, num_classes). Only be passed when as_two_stage is
True, otherwise is None.
enc_bbox_preds (Tensor): Regression results of each points
on the encode feature map, has shape (N, h*w, 4). Only be
passed when as_two_stage is True, otherwise is None.
img_metas (list[dict]): Meta information of each image.
rescale (bool, optional): If True, return boxes in original
image space. Default False.
Returns:
list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple. \
The first item is an (n, 5) tensor, where the first 4 columns \
are bounding box positions (tl_x, tl_y, br_x, br_y) and the \
5-th column is a score between 0 and 1. The second item is a \
(n,) tensor where each item is the predicted class label of \
the corresponding box.
"""
cls_scores = all_cls_scores[-1]
bbox_preds = all_bbox_preds[-1]
result_list = []
for img_id in range(len(img_metas)):
cls_score = cls_scores[img_id]
bbox_pred = bbox_preds[img_id]
img_shape = img_metas[img_id]['img_shape']
scale_factor = img_metas[img_id]['scale_factor']
proposals = self._get_bboxes_single(cls_score, bbox_pred,
img_shape, scale_factor,
rescale)
result_list.append(proposals)
return result_list