RockeyCoss
add code files”
51f6859
# Copyright (c) OpenMMLab. All rights reserved.
from __future__ import division
import copy
import warnings
import torch
import torch.nn as nn
from mmcv import ConfigDict
from mmcv.ops import DeformConv2d, batched_nms
from mmcv.runner import BaseModule, ModuleList
from mmdet.core import (RegionAssigner, build_assigner, build_sampler,
images_to_levels, multi_apply)
from mmdet.core.utils import select_single_mlvl
from ..builder import HEADS, build_head
from .base_dense_head import BaseDenseHead
from .rpn_head import RPNHead
class AdaptiveConv(BaseModule):
"""AdaptiveConv used to adapt the sampling location with the anchors.
Args:
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the conv kernel. Default: 3
stride (int or tuple, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to both sides of
the input. Default: 1
dilation (int or tuple, optional): Spacing between kernel elements.
Default: 3
groups (int, optional): Number of blocked connections from input
channels to output channels. Default: 1
bias (bool, optional): If set True, adds a learnable bias to the
output. Default: False.
type (str, optional): Type of adaptive conv, can be either 'offset'
(arbitrary anchors) or 'dilation' (uniform anchor).
Default: 'dilation'.
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
dilation=3,
groups=1,
bias=False,
type='dilation',
init_cfg=dict(
type='Normal', std=0.01, override=dict(name='conv'))):
super(AdaptiveConv, self).__init__(init_cfg)
assert type in ['offset', 'dilation']
self.adapt_type = type
assert kernel_size == 3, 'Adaptive conv only supports kernels 3'
if self.adapt_type == 'offset':
assert stride == 1 and padding == 1 and groups == 1, \
'Adaptive conv offset mode only supports padding: {1}, ' \
f'stride: {1}, groups: {1}'
self.conv = DeformConv2d(
in_channels,
out_channels,
kernel_size,
padding=padding,
stride=stride,
groups=groups,
bias=bias)
else:
self.conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size,
padding=dilation,
dilation=dilation)
def forward(self, x, offset):
"""Forward function."""
if self.adapt_type == 'offset':
N, _, H, W = x.shape
assert offset is not None
assert H * W == offset.shape[1]
# reshape [N, NA, 18] to (N, 18, H, W)
offset = offset.permute(0, 2, 1).reshape(N, -1, H, W)
offset = offset.contiguous()
x = self.conv(x, offset)
else:
assert offset is None
x = self.conv(x)
return x
@HEADS.register_module()
class StageCascadeRPNHead(RPNHead):
"""Stage of CascadeRPNHead.
Args:
in_channels (int): Number of channels in the input feature map.
anchor_generator (dict): anchor generator config.
adapt_cfg (dict): adaptation config.
bridged_feature (bool, optional): whether update rpn feature.
Default: False.
with_cls (bool, optional): whether use classification branch.
Default: True.
sampling (bool, optional): whether use sampling. Default: True.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
def __init__(self,
in_channels,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[1.0],
strides=[4, 8, 16, 32, 64]),
adapt_cfg=dict(type='dilation', dilation=3),
bridged_feature=False,
with_cls=True,
sampling=True,
init_cfg=None,
**kwargs):
self.with_cls = with_cls
self.anchor_strides = anchor_generator['strides']
self.anchor_scales = anchor_generator['scales']
self.bridged_feature = bridged_feature
self.adapt_cfg = adapt_cfg
super(StageCascadeRPNHead, self).__init__(
in_channels,
anchor_generator=anchor_generator,
init_cfg=init_cfg,
**kwargs)
# override sampling and sampler
self.sampling = sampling
if self.train_cfg:
self.assigner = build_assigner(self.train_cfg.assigner)
# use PseudoSampler when sampling is False
if self.sampling and hasattr(self.train_cfg, 'sampler'):
sampler_cfg = self.train_cfg.sampler
else:
sampler_cfg = dict(type='PseudoSampler')
self.sampler = build_sampler(sampler_cfg, context=self)
if init_cfg is None:
self.init_cfg = dict(
type='Normal', std=0.01, override=[dict(name='rpn_reg')])
if self.with_cls:
self.init_cfg['override'].append(dict(name='rpn_cls'))
def _init_layers(self):
"""Init layers of a CascadeRPN stage."""
self.rpn_conv = AdaptiveConv(self.in_channels, self.feat_channels,
**self.adapt_cfg)
if self.with_cls:
self.rpn_cls = nn.Conv2d(self.feat_channels,
self.num_anchors * self.cls_out_channels,
1)
self.rpn_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 1)
self.relu = nn.ReLU(inplace=True)
def forward_single(self, x, offset):
"""Forward function of single scale."""
bridged_x = x
x = self.relu(self.rpn_conv(x, offset))
if self.bridged_feature:
bridged_x = x # update feature
cls_score = self.rpn_cls(x) if self.with_cls else None
bbox_pred = self.rpn_reg(x)
return bridged_x, cls_score, bbox_pred
def forward(self, feats, offset_list=None):
"""Forward function."""
if offset_list is None:
offset_list = [None for _ in range(len(feats))]
return multi_apply(self.forward_single, feats, offset_list)
def _region_targets_single(self,
anchors,
valid_flags,
gt_bboxes,
gt_bboxes_ignore,
gt_labels,
img_meta,
featmap_sizes,
label_channels=1):
"""Get anchor targets based on region for single level."""
assign_result = self.assigner.assign(
anchors,
valid_flags,
gt_bboxes,
img_meta,
featmap_sizes,
self.anchor_scales[0],
self.anchor_strides,
gt_bboxes_ignore=gt_bboxes_ignore,
gt_labels=None,
allowed_border=self.train_cfg.allowed_border)
flat_anchors = torch.cat(anchors)
sampling_result = self.sampler.sample(assign_result, flat_anchors,
gt_bboxes)
num_anchors = flat_anchors.shape[0]
bbox_targets = torch.zeros_like(flat_anchors)
bbox_weights = torch.zeros_like(flat_anchors)
labels = flat_anchors.new_zeros(num_anchors, dtype=torch.long)
label_weights = flat_anchors.new_zeros(num_anchors, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
if not self.reg_decoded_bbox:
pos_bbox_targets = self.bbox_coder.encode(
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
else:
pos_bbox_targets = sampling_result.pos_gt_bboxes
bbox_targets[pos_inds, :] = pos_bbox_targets
bbox_weights[pos_inds, :] = 1.0
if gt_labels is None:
labels[pos_inds] = 1
else:
labels[pos_inds] = gt_labels[
sampling_result.pos_assigned_gt_inds]
if self.train_cfg.pos_weight <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = self.train_cfg.pos_weight
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
neg_inds)
def region_targets(self,
anchor_list,
valid_flag_list,
gt_bboxes_list,
img_metas,
featmap_sizes,
gt_bboxes_ignore_list=None,
gt_labels_list=None,
label_channels=1,
unmap_outputs=True):
"""See :func:`StageCascadeRPNHead.get_targets`."""
num_imgs = len(img_metas)
assert len(anchor_list) == len(valid_flag_list) == num_imgs
# anchor number of multi levels
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
# compute targets for each image
if gt_bboxes_ignore_list is None:
gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
if gt_labels_list is None:
gt_labels_list = [None for _ in range(num_imgs)]
(all_labels, all_label_weights, all_bbox_targets, all_bbox_weights,
pos_inds_list, neg_inds_list) = multi_apply(
self._region_targets_single,
anchor_list,
valid_flag_list,
gt_bboxes_list,
gt_bboxes_ignore_list,
gt_labels_list,
img_metas,
featmap_sizes=featmap_sizes,
label_channels=label_channels)
# no valid anchors
if any([labels is None for labels in all_labels]):
return None
# sampled anchors of all images
num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
# split targets to a list w.r.t. multiple levels
labels_list = images_to_levels(all_labels, num_level_anchors)
label_weights_list = images_to_levels(all_label_weights,
num_level_anchors)
bbox_targets_list = images_to_levels(all_bbox_targets,
num_level_anchors)
bbox_weights_list = images_to_levels(all_bbox_weights,
num_level_anchors)
return (labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, num_total_pos, num_total_neg)
def get_targets(self,
anchor_list,
valid_flag_list,
gt_bboxes,
img_metas,
featmap_sizes,
gt_bboxes_ignore=None,
label_channels=1):
"""Compute regression and classification targets for anchors.
Args:
anchor_list (list[list]): Multi level anchors of each image.
valid_flag_list (list[list]): Multi level valid flags of each
image.
gt_bboxes (list[Tensor]): Ground truth bboxes of each image.
img_metas (list[dict]): Meta info of each image.
featmap_sizes (list[Tensor]): Feature mapsize each level
gt_bboxes_ignore (list[Tensor]): Ignore bboxes of each images
label_channels (int): Channel of label.
Returns:
cls_reg_targets (tuple)
"""
if isinstance(self.assigner, RegionAssigner):
cls_reg_targets = self.region_targets(
anchor_list,
valid_flag_list,
gt_bboxes,
img_metas,
featmap_sizes,
gt_bboxes_ignore_list=gt_bboxes_ignore,
label_channels=label_channels)
else:
cls_reg_targets = super(StageCascadeRPNHead, self).get_targets(
anchor_list,
valid_flag_list,
gt_bboxes,
img_metas,
gt_bboxes_ignore_list=gt_bboxes_ignore,
label_channels=label_channels)
return cls_reg_targets
def anchor_offset(self, anchor_list, anchor_strides, featmap_sizes):
""" Get offset for deformable conv based on anchor shape
NOTE: currently support deformable kernel_size=3 and dilation=1
Args:
anchor_list (list[list[tensor])): [NI, NLVL, NA, 4] list of
multi-level anchors
anchor_strides (list[int]): anchor stride of each level
Returns:
offset_list (list[tensor]): [NLVL, NA, 2, 18]: offset of DeformConv
kernel.
"""
def _shape_offset(anchors, stride, ks=3, dilation=1):
# currently support kernel_size=3 and dilation=1
assert ks == 3 and dilation == 1
pad = (ks - 1) // 2
idx = torch.arange(-pad, pad + 1, dtype=dtype, device=device)
yy, xx = torch.meshgrid(idx, idx) # return order matters
xx = xx.reshape(-1)
yy = yy.reshape(-1)
w = (anchors[:, 2] - anchors[:, 0]) / stride
h = (anchors[:, 3] - anchors[:, 1]) / stride
w = w / (ks - 1) - dilation
h = h / (ks - 1) - dilation
offset_x = w[:, None] * xx # (NA, ks**2)
offset_y = h[:, None] * yy # (NA, ks**2)
return offset_x, offset_y
def _ctr_offset(anchors, stride, featmap_size):
feat_h, feat_w = featmap_size
assert len(anchors) == feat_h * feat_w
x = (anchors[:, 0] + anchors[:, 2]) * 0.5
y = (anchors[:, 1] + anchors[:, 3]) * 0.5
# compute centers on feature map
x = x / stride
y = y / stride
# compute predefine centers
xx = torch.arange(0, feat_w, device=anchors.device)
yy = torch.arange(0, feat_h, device=anchors.device)
yy, xx = torch.meshgrid(yy, xx)
xx = xx.reshape(-1).type_as(x)
yy = yy.reshape(-1).type_as(y)
offset_x = x - xx # (NA, )
offset_y = y - yy # (NA, )
return offset_x, offset_y
num_imgs = len(anchor_list)
num_lvls = len(anchor_list[0])
dtype = anchor_list[0][0].dtype
device = anchor_list[0][0].device
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
offset_list = []
for i in range(num_imgs):
mlvl_offset = []
for lvl in range(num_lvls):
c_offset_x, c_offset_y = _ctr_offset(anchor_list[i][lvl],
anchor_strides[lvl],
featmap_sizes[lvl])
s_offset_x, s_offset_y = _shape_offset(anchor_list[i][lvl],
anchor_strides[lvl])
# offset = ctr_offset + shape_offset
offset_x = s_offset_x + c_offset_x[:, None]
offset_y = s_offset_y + c_offset_y[:, None]
# offset order (y0, x0, y1, x2, .., y8, x8, y9, x9)
offset = torch.stack([offset_y, offset_x], dim=-1)
offset = offset.reshape(offset.size(0), -1) # [NA, 2*ks**2]
mlvl_offset.append(offset)
offset_list.append(torch.cat(mlvl_offset)) # [totalNA, 2*ks**2]
offset_list = images_to_levels(offset_list, num_level_anchors)
return offset_list
def loss_single(self, cls_score, bbox_pred, anchors, labels, label_weights,
bbox_targets, bbox_weights, num_total_samples):
"""Loss function on single scale."""
# classification loss
if self.with_cls:
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
cls_score = cls_score.permute(0, 2, 3,
1).reshape(-1, self.cls_out_channels)
loss_cls = self.loss_cls(
cls_score, labels, label_weights, avg_factor=num_total_samples)
# regression loss
bbox_targets = bbox_targets.reshape(-1, 4)
bbox_weights = bbox_weights.reshape(-1, 4)
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
if self.reg_decoded_bbox:
# When the regression loss (e.g. `IouLoss`, `GIouLoss`)
# is applied directly on the decoded bounding boxes, it
# decodes the already encoded coordinates to absolute format.
anchors = anchors.reshape(-1, 4)
bbox_pred = self.bbox_coder.decode(anchors, bbox_pred)
loss_reg = self.loss_bbox(
bbox_pred,
bbox_targets,
bbox_weights,
avg_factor=num_total_samples)
if self.with_cls:
return loss_cls, loss_reg
return None, loss_reg
def loss(self,
anchor_list,
valid_flag_list,
cls_scores,
bbox_preds,
gt_bboxes,
img_metas,
gt_bboxes_ignore=None):
"""Compute losses of the head.
Args:
anchor_list (list[list]): Multi level anchors of each image.
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W)
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
boxes can be ignored when computing the loss. Default: None
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in bbox_preds]
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
cls_reg_targets = self.get_targets(
anchor_list,
valid_flag_list,
gt_bboxes,
img_metas,
featmap_sizes,
gt_bboxes_ignore=gt_bboxes_ignore,
label_channels=label_channels)
if cls_reg_targets is None:
return None
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
num_total_pos, num_total_neg) = cls_reg_targets
if self.sampling:
num_total_samples = num_total_pos + num_total_neg
else:
# 200 is hard-coded average factor,
# which follows guided anchoring.
num_total_samples = sum([label.numel()
for label in labels_list]) / 200.0
# change per image, per level anchor_list to per_level, per_image
mlvl_anchor_list = list(zip(*anchor_list))
# concat mlvl_anchor_list
mlvl_anchor_list = [
torch.cat(anchors, dim=0) for anchors in mlvl_anchor_list
]
losses = multi_apply(
self.loss_single,
cls_scores,
bbox_preds,
mlvl_anchor_list,
labels_list,
label_weights_list,
bbox_targets_list,
bbox_weights_list,
num_total_samples=num_total_samples)
if self.with_cls:
return dict(loss_rpn_cls=losses[0], loss_rpn_reg=losses[1])
return dict(loss_rpn_reg=losses[1])
def get_bboxes(self,
anchor_list,
cls_scores,
bbox_preds,
img_metas,
cfg,
rescale=False):
"""Get proposal predict.
Args:
anchor_list (list[list]): Multi level anchors of each image.
cls_scores (list[Tensor]): Classification scores for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * num_classes, H, W).
bbox_preds (list[Tensor]): Box energies / deltas for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * 4, H, W).
img_metas (list[dict], Optional): Image meta info. Default None.
cfg (mmcv.Config, Optional): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Default: False.
Returns:
Tensor: Labeled boxes in shape (n, 5), where the first 4 columns
are bounding box positions (tl_x, tl_y, br_x, br_y) and the
5-th column is a score between 0 and 1.
"""
assert len(cls_scores) == len(bbox_preds)
result_list = []
for img_id in range(len(img_metas)):
cls_score_list = select_single_mlvl(cls_scores, img_id)
bbox_pred_list = select_single_mlvl(bbox_preds, img_id)
img_shape = img_metas[img_id]['img_shape']
scale_factor = img_metas[img_id]['scale_factor']
proposals = self._get_bboxes_single(cls_score_list, bbox_pred_list,
anchor_list[img_id], img_shape,
scale_factor, cfg, rescale)
result_list.append(proposals)
return result_list
def _get_bboxes_single(self,
cls_scores,
bbox_preds,
mlvl_anchors,
img_shape,
scale_factor,
cfg,
rescale=False):
"""Transform outputs of a single image into bbox predictions.
Args:
cls_scores (list[Tensor]): Box scores from all scale
levels of a single image, each item has shape
(num_anchors * num_classes, H, W).
bbox_preds (list[Tensor]): Box energies / deltas from
all scale levels of a single image, each item has
shape (num_anchors * 4, H, W).
mlvl_anchors (list[Tensor]): Box reference from all scale
levels of a single image, each item has shape
(num_total_anchors, 4).
img_shape (tuple[int]): Shape of the input image,
(height, width, 3).
scale_factor (ndarray): Scale factor of the image arange as
(w_scale, h_scale, w_scale, h_scale).
cfg (mmcv.Config): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Default False.
Returns:
Tensor: Labeled boxes in shape (n, 5), where the first 4 columns
are bounding box positions (tl_x, tl_y, br_x, br_y) and the
5-th column is a score between 0 and 1.
"""
cfg = self.test_cfg if cfg is None else cfg
cfg = copy.deepcopy(cfg)
# bboxes from different level should be independent during NMS,
# level_ids are used as labels for batched NMS to separate them
level_ids = []
mlvl_scores = []
mlvl_bbox_preds = []
mlvl_valid_anchors = []
nms_pre = cfg.get('nms_pre', -1)
for idx in range(len(cls_scores)):
rpn_cls_score = cls_scores[idx]
rpn_bbox_pred = bbox_preds[idx]
assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:]
rpn_cls_score = rpn_cls_score.permute(1, 2, 0)
if self.use_sigmoid_cls:
rpn_cls_score = rpn_cls_score.reshape(-1)
scores = rpn_cls_score.sigmoid()
else:
rpn_cls_score = rpn_cls_score.reshape(-1, 2)
# We set FG labels to [0, num_class-1] and BG label to
# num_class in RPN head since mmdet v2.5, which is unified to
# be consistent with other head since mmdet v2.0. In mmdet v2.0
# to v2.4 we keep BG label as 0 and FG label as 1 in rpn head.
scores = rpn_cls_score.softmax(dim=1)[:, 0]
rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1, 4)
anchors = mlvl_anchors[idx]
if 0 < nms_pre < scores.shape[0]:
# sort is faster than topk
# _, topk_inds = scores.topk(cfg.nms_pre)
ranked_scores, rank_inds = scores.sort(descending=True)
topk_inds = rank_inds[:nms_pre]
scores = ranked_scores[:nms_pre]
rpn_bbox_pred = rpn_bbox_pred[topk_inds, :]
anchors = anchors[topk_inds, :]
mlvl_scores.append(scores)
mlvl_bbox_preds.append(rpn_bbox_pred)
mlvl_valid_anchors.append(anchors)
level_ids.append(
scores.new_full((scores.size(0), ), idx, dtype=torch.long))
scores = torch.cat(mlvl_scores)
anchors = torch.cat(mlvl_valid_anchors)
rpn_bbox_pred = torch.cat(mlvl_bbox_preds)
proposals = self.bbox_coder.decode(
anchors, rpn_bbox_pred, max_shape=img_shape)
ids = torch.cat(level_ids)
if cfg.min_bbox_size >= 0:
w = proposals[:, 2] - proposals[:, 0]
h = proposals[:, 3] - proposals[:, 1]
valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size)
if not valid_mask.all():
proposals = proposals[valid_mask]
scores = scores[valid_mask]
ids = ids[valid_mask]
# deprecate arguments warning
if 'nms' not in cfg or 'max_num' in cfg or 'nms_thr' in cfg:
warnings.warn(
'In rpn_proposal or test_cfg, '
'nms_thr has been moved to a dict named nms as '
'iou_threshold, max_num has been renamed as max_per_img, '
'name of original arguments and the way to specify '
'iou_threshold of NMS will be deprecated.')
if 'nms' not in cfg:
cfg.nms = ConfigDict(dict(type='nms', iou_threshold=cfg.nms_thr))
if 'max_num' in cfg:
if 'max_per_img' in cfg:
assert cfg.max_num == cfg.max_per_img, f'You ' \
f'set max_num and ' \
f'max_per_img at the same time, but get {cfg.max_num} ' \
f'and {cfg.max_per_img} respectively' \
'Please delete max_num which will be deprecated.'
else:
cfg.max_per_img = cfg.max_num
if 'nms_thr' in cfg:
assert cfg.nms.iou_threshold == cfg.nms_thr, f'You set' \
f' iou_threshold in nms and ' \
f'nms_thr at the same time, but get' \
f' {cfg.nms.iou_threshold} and {cfg.nms_thr}' \
f' respectively. Please delete the nms_thr ' \
f'which will be deprecated.'
if proposals.numel() > 0:
dets, _ = batched_nms(proposals, scores, ids, cfg.nms)
else:
return proposals.new_zeros(0, 5)
return dets[:cfg.max_per_img]
def refine_bboxes(self, anchor_list, bbox_preds, img_metas):
"""Refine bboxes through stages."""
num_levels = len(bbox_preds)
new_anchor_list = []
for img_id in range(len(img_metas)):
mlvl_anchors = []
for i in range(num_levels):
bbox_pred = bbox_preds[i][img_id].detach()
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
img_shape = img_metas[img_id]['img_shape']
bboxes = self.bbox_coder.decode(anchor_list[img_id][i],
bbox_pred, img_shape)
mlvl_anchors.append(bboxes)
new_anchor_list.append(mlvl_anchors)
return new_anchor_list
@HEADS.register_module()
class CascadeRPNHead(BaseDenseHead):
"""The CascadeRPNHead will predict more accurate region proposals, which is
required for two-stage detectors (such as Fast/Faster R-CNN). CascadeRPN
consists of a sequence of RPNStage to progressively improve the accuracy of
the detected proposals.
More details can be found in ``https://arxiv.org/abs/1909.06720``.
Args:
num_stages (int): number of CascadeRPN stages.
stages (list[dict]): list of configs to build the stages.
train_cfg (list[dict]): list of configs at training time each stage.
test_cfg (dict): config at testing time.
"""
def __init__(self, num_stages, stages, train_cfg, test_cfg, init_cfg=None):
super(CascadeRPNHead, self).__init__(init_cfg)
assert num_stages == len(stages)
self.num_stages = num_stages
# Be careful! Pretrained weights cannot be loaded when use
# nn.ModuleList
self.stages = ModuleList()
for i in range(len(stages)):
train_cfg_i = train_cfg[i] if train_cfg is not None else None
stages[i].update(train_cfg=train_cfg_i)
stages[i].update(test_cfg=test_cfg)
self.stages.append(build_head(stages[i]))
self.train_cfg = train_cfg
self.test_cfg = test_cfg
def loss(self):
"""loss() is implemented in StageCascadeRPNHead."""
pass
def get_bboxes(self):
"""get_bboxes() is implemented in StageCascadeRPNHead."""
pass
def forward_train(self,
x,
img_metas,
gt_bboxes,
gt_labels=None,
gt_bboxes_ignore=None,
proposal_cfg=None):
"""Forward train function."""
assert gt_labels is None, 'RPN does not require gt_labels'
featmap_sizes = [featmap.size()[-2:] for featmap in x]
device = x[0].device
anchor_list, valid_flag_list = self.stages[0].get_anchors(
featmap_sizes, img_metas, device=device)
losses = dict()
for i in range(self.num_stages):
stage = self.stages[i]
if stage.adapt_cfg['type'] == 'offset':
offset_list = stage.anchor_offset(anchor_list,
stage.anchor_strides,
featmap_sizes)
else:
offset_list = None
x, cls_score, bbox_pred = stage(x, offset_list)
rpn_loss_inputs = (anchor_list, valid_flag_list, cls_score,
bbox_pred, gt_bboxes, img_metas)
stage_loss = stage.loss(*rpn_loss_inputs)
for name, value in stage_loss.items():
losses['s{}.{}'.format(i, name)] = value
# refine boxes
if i < self.num_stages - 1:
anchor_list = stage.refine_bboxes(anchor_list, bbox_pred,
img_metas)
if proposal_cfg is None:
return losses
else:
proposal_list = self.stages[-1].get_bboxes(anchor_list, cls_score,
bbox_pred, img_metas,
self.test_cfg)
return losses, proposal_list
def simple_test_rpn(self, x, img_metas):
"""Simple forward test function."""
featmap_sizes = [featmap.size()[-2:] for featmap in x]
device = x[0].device
anchor_list, _ = self.stages[0].get_anchors(
featmap_sizes, img_metas, device=device)
for i in range(self.num_stages):
stage = self.stages[i]
if stage.adapt_cfg['type'] == 'offset':
offset_list = stage.anchor_offset(anchor_list,
stage.anchor_strides,
featmap_sizes)
else:
offset_list = None
x, cls_score, bbox_pred = stage(x, offset_list)
if i < self.num_stages - 1:
anchor_list = stage.refine_bboxes(anchor_list, bbox_pred,
img_metas)
proposal_list = self.stages[-1].get_bboxes(anchor_list, cls_score,
bbox_pred, img_metas,
self.test_cfg)
return proposal_list
def aug_test_rpn(self, x, img_metas):
"""Augmented forward test function."""
raise NotImplementedError(
'CascadeRPNHead does not support test-time augmentation')