RockeyCoss
add code files”
51f6859
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from ...core.bbox.assigners import AscendMaxIoUAssigner
from ...core.bbox.samplers import PseudoSampler
from ...utils import (batch_images_to_levels, get_max_num_gt_division_factor,
masked_fill)
from ..builder import HEADS
from .anchor_head import AnchorHead
@HEADS.register_module()
class AscendAnchorHead(AnchorHead):
"""Ascend Anchor-based head (RetinaNet, SSD, etc.).
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
feat_channels (int): Number of hidden channels. Used in child classes.
anchor_generator (dict): Config dict for anchor generator
bbox_coder (dict): Config of bounding box coder.
reg_decoded_bbox (bool): If true, the regression loss would be
applied directly on decoded bounding boxes, converting both
the predicted boxes and regression targets to absolute
coordinates format. Default False. It should be `True` when
using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head.
loss_cls (dict): Config of classification loss.
loss_bbox (dict): Config of localization loss.
train_cfg (dict): Training config of anchor head.
test_cfg (dict): Testing config of anchor head.
init_cfg (dict or list[dict], optional): Initialization config dict.
""" # noqa: W605
def __init__(self,
num_classes,
in_channels,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8, 16, 32],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
clip_border=True,
target_means=(.0, .0, .0, .0),
target_stds=(1.0, 1.0, 1.0, 1.0)),
reg_decoded_bbox=False,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
train_cfg=None,
test_cfg=None,
init_cfg=dict(type='Normal', layer='Conv2d', std=0.01)):
super(AscendAnchorHead, self).__init__(
num_classes=num_classes,
in_channels=in_channels,
feat_channels=feat_channels,
anchor_generator=anchor_generator,
bbox_coder=bbox_coder,
reg_decoded_bbox=reg_decoded_bbox,
loss_cls=loss_cls,
loss_bbox=loss_bbox,
train_cfg=train_cfg,
test_cfg=test_cfg,
init_cfg=init_cfg)
def get_batch_gt_bboxes(self, gt_bboxes_list, num_images, gt_nums, device,
max_gt_labels):
"""Get ground truth bboxes of all image.
Args:
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
num_images (int): The num of images.
gt_nums(list[int]): The ground truth bboxes num of each image.
device (torch.device | str): Device for returned tensors
max_gt_labels(int): The max ground truth bboxes num of all image.
Returns:
batch_gt_bboxes: (Tensor): Ground truth bboxes of all image.
"""
# a static ground truth boxes.
# Save static gt. Related to Ascend. Helps improve performance
if not hasattr(self, 'batch_gt_bboxes'):
self.batch_gt_bboxes = {}
# a min anchor filled the excess anchor
if not hasattr(self, 'min_anchor'):
self.min_anchor = (-1354, -1344)
if gt_bboxes_list is None:
batch_gt_bboxes = None
else:
if self.batch_gt_bboxes.get(max_gt_labels) is None:
batch_gt_bboxes = torch.zeros((num_images, max_gt_labels, 4),
dtype=gt_bboxes_list[0].dtype,
device=device)
batch_gt_bboxes[:, :, :2] = self.min_anchor[0]
batch_gt_bboxes[:, :, 2:] = self.min_anchor[1]
self.batch_gt_bboxes[max_gt_labels] = batch_gt_bboxes.clone()
else:
batch_gt_bboxes = self.batch_gt_bboxes.get(
max_gt_labels).clone()
for index_imgs, gt_bboxes in enumerate(gt_bboxes_list):
batch_gt_bboxes[index_imgs, :gt_nums[index_imgs]] = gt_bboxes
return batch_gt_bboxes
def get_batch_gt_bboxes_ignore(self, gt_bboxes_ignore_list, num_images,
gt_nums, device):
"""Ground truth bboxes to be ignored of all image.
Args:
gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be
ignored.
num_images (int): The num of images.
gt_nums(list[int]): The ground truth bboxes num of each image.
device (torch.device | str): Device for returned tensors
Returns:
batch_gt_bboxes_ignore: (Tensor): Ground truth bboxes to be
ignored of all image.
"""
# TODO: support gt_bboxes_ignore_list
if gt_bboxes_ignore_list is None:
batch_gt_bboxes_ignore = None
else:
raise RuntimeError('gt_bboxes_ignore not support yet')
return batch_gt_bboxes_ignore
def get_batch_gt_labels(self, gt_labels_list, num_images, gt_nums, device,
max_gt_labels):
"""Ground truth bboxes to be ignored of all image.
Args:
gt_labels_list (list[Tensor]): Ground truth labels.
num_images (int): The num of images.
gt_nums(list[int]): The ground truth bboxes num of each image.
device (torch.device | str): Device for returned tensors
Returns:
batch_gt_labels: (Tensor): Ground truth labels of all image.
"""
if gt_labels_list is None:
batch_gt_labels = None
else:
batch_gt_labels = torch.zeros((num_images, max_gt_labels),
dtype=gt_labels_list[0].dtype,
device=device)
for index_imgs, gt_labels in enumerate(gt_labels_list):
batch_gt_labels[index_imgs, :gt_nums[index_imgs]] = gt_labels
return batch_gt_labels
def _get_targets_concat(self,
batch_anchors,
batch_valid_flags,
batch_gt_bboxes,
batch_gt_bboxes_ignore,
batch_gt_labels,
img_metas,
label_channels=1,
unmap_outputs=True):
"""Compute regression and classification targets for anchors in all
images.
Args:
batch_anchors (Tensor): anchors of all image, which are
concatenated into a single tensor of
shape (num_imgs, num_anchors ,4).
batch_valid_flags (Tensor): valid flags of all image,
which are concatenated into a single tensor of
shape (num_imgs, num_anchors,).
batch_gt_bboxes (Tensor): Ground truth bboxes of all image,
shape (num_imgs, max_gt_nums, 4).
batch_gt_bboxes_ignore (Tensor): Ground truth bboxes to be
ignored, shape (num_imgs, num_ignored_gts, 4).
batch_gt_labels (Tensor): Ground truth labels of each box,
shape (num_imgs, max_gt_nums,).
img_metas (list[dict]): Meta info of each image.
label_channels (int): Channel of label.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
Returns:
tuple:
batch_labels (Tensor): Labels of all level
batch_label_weights (Tensor): Label weights of all level
batch_bbox_targets (Tensor): BBox targets of all level
batch_bbox_weights (Tensor): BBox weights of all level
batch_pos_mask (Tensor): Positive samples mask in all images
batch_neg_mask (Tensor): Negative samples mask in all images
sampling_result (Sampling): The result of sampling,
default: None.
"""
num_imgs, num_anchors, _ = batch_anchors.size()
# assign gt and sample batch_anchors
assign_result = self.assigner.assign(
batch_anchors,
batch_gt_bboxes,
batch_gt_bboxes_ignore,
None if self.sampling else batch_gt_labels,
batch_bboxes_ignore_mask=batch_valid_flags)
# TODO: support sampling_result
sampling_result = None
batch_pos_mask = assign_result.batch_pos_mask
batch_neg_mask = assign_result.batch_neg_mask
batch_anchor_gt_indes = assign_result.batch_anchor_gt_indes
batch_anchor_gt_labels = assign_result.batch_anchor_gt_labels
batch_anchor_gt_bboxes = torch.zeros(
batch_anchors.size(),
dtype=batch_anchors.dtype,
device=batch_anchors.device)
for index_imgs in range(num_imgs):
batch_anchor_gt_bboxes[index_imgs] = torch.index_select(
batch_gt_bboxes[index_imgs], 0,
batch_anchor_gt_indes[index_imgs])
batch_bbox_targets = torch.zeros_like(batch_anchors)
batch_bbox_weights = torch.zeros_like(batch_anchors)
batch_labels = batch_anchors.new_full((num_imgs, num_anchors),
self.num_classes,
dtype=torch.int)
batch_label_weights = batch_anchors.new_zeros((num_imgs, num_anchors),
dtype=torch.float)
if not self.reg_decoded_bbox:
batch_pos_bbox_targets = self.bbox_coder.encode(
batch_anchors, batch_anchor_gt_bboxes)
else:
batch_pos_bbox_targets = batch_anchor_gt_bboxes
batch_bbox_targets = masked_fill(batch_bbox_targets,
batch_pos_mask.unsqueeze(2),
batch_pos_bbox_targets)
batch_bbox_weights = masked_fill(batch_bbox_weights,
batch_pos_mask.unsqueeze(2), 1.0)
if batch_gt_labels is None:
batch_labels = masked_fill(batch_labels, batch_pos_mask, 0.0)
else:
batch_labels = masked_fill(batch_labels, batch_pos_mask,
batch_anchor_gt_labels)
if self.train_cfg.pos_weight <= 0:
batch_label_weights = masked_fill(batch_label_weights,
batch_pos_mask, 1.0)
else:
batch_label_weights = masked_fill(batch_label_weights,
batch_pos_mask,
self.train_cfg.pos_weight)
batch_label_weights = masked_fill(batch_label_weights, batch_neg_mask,
1.0)
return (batch_labels, batch_label_weights, batch_bbox_targets,
batch_bbox_weights, batch_pos_mask, batch_neg_mask,
sampling_result)
def get_targets(self,
anchor_list,
valid_flag_list,
gt_bboxes_list,
img_metas,
gt_bboxes_ignore_list=None,
gt_labels_list=None,
label_channels=1,
unmap_outputs=True,
return_sampling_results=False,
return_level=True):
"""Compute regression and classification targets for anchors in
multiple images.
Args:
anchor_list (list[list[Tensor]]): Multi level anchors of each
image. The outer list indicates images, and the inner list
corresponds to feature levels of the image. Each element of
the inner list is a tensor of shape (num_anchors, 4).
valid_flag_list (list[list[Tensor]]): Multi level valid flags of
each image. The outer list indicates images, and the inner list
corresponds to feature levels of the image. Each element of
the inner list is a tensor of shape (num_anchors, )
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
img_metas (list[dict]): Meta info of each image.
gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be
ignored.
gt_labels_list (list[Tensor]): Ground truth labels of each box.
label_channels (int): Channel of label.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
return_sampling_results (bool): Whether to return the result of
sample.
return_level (bool): Whether to map outputs back to the levels
of feature map sizes.
Returns:
tuple: Usually returns a tuple containing learning targets.
- labels_list (list[Tensor]): Labels of each level.
- label_weights_list (list[Tensor]): Label weights of each
level.
- bbox_targets_list (list[Tensor]): BBox targets of each level.
- bbox_weights_list (list[Tensor]): BBox weights of each level.
- num_total_pos (int): Number of positive samples in all
images.
- num_total_neg (int): Number of negative samples in all
images.
additional_returns: This function enables user-defined returns from
`self._get_targets_single`. These returns are currently refined
to properties at each feature map (i.e. having HxW dimension).
The results will be concatenated after the end
"""
assert gt_bboxes_ignore_list is None
assert unmap_outputs is True
assert return_sampling_results is False
assert self.train_cfg.allowed_border < 0
assert isinstance(self.assigner, AscendMaxIoUAssigner)
assert isinstance(self.sampler, PseudoSampler)
num_imgs = len(img_metas)
assert len(anchor_list) == len(valid_flag_list) == num_imgs
device = anchor_list[0][0].device
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
batch_anchor_list = []
batch_valid_flag_list = []
for i in range(num_imgs):
assert len(anchor_list[i]) == len(valid_flag_list[i])
batch_anchor_list.append(torch.cat(anchor_list[i]))
batch_valid_flag_list.append(torch.cat(valid_flag_list[i]))
batch_anchors = torch.cat(
[torch.unsqueeze(anchor, 0) for anchor in batch_anchor_list], 0)
batch_valid_flags = torch.cat([
torch.unsqueeze(batch_valid_flag, 0)
for batch_valid_flag in batch_valid_flag_list
], 0)
gt_nums = [len(gt_bbox) for gt_bbox in gt_bboxes_list]
max_gt_nums = get_max_num_gt_division_factor(gt_nums)
batch_gt_bboxes = self.get_batch_gt_bboxes(gt_bboxes_list, num_imgs,
gt_nums, device,
max_gt_nums)
batch_gt_bboxes_ignore = self.get_batch_gt_bboxes_ignore(
gt_bboxes_ignore_list, num_imgs, gt_nums, device)
batch_gt_labels = self.get_batch_gt_labels(gt_labels_list, num_imgs,
gt_nums, device,
max_gt_nums)
results = self._get_targets_concat(
batch_anchors,
batch_valid_flags,
batch_gt_bboxes,
batch_gt_bboxes_ignore,
batch_gt_labels,
img_metas,
label_channels=label_channels,
unmap_outputs=unmap_outputs)
(batch_labels, batch_label_weights, batch_bbox_targets,
batch_bbox_weights, batch_pos_mask, batch_neg_mask,
sampling_result) = results[:7]
rest_results = list(results[7:]) # user-added return values
# sampled anchors of all images
min_num = torch.ones((num_imgs, ),
dtype=torch.long,
device=batch_pos_mask.device)
num_total_pos = torch.sum(
torch.max(torch.sum(batch_pos_mask, dim=1), min_num))
num_total_neg = torch.sum(
torch.max(torch.sum(batch_neg_mask, dim=1), min_num))
if return_level is True:
labels_list = batch_images_to_levels(batch_labels,
num_level_anchors)
label_weights_list = batch_images_to_levels(
batch_label_weights, num_level_anchors)
bbox_targets_list = batch_images_to_levels(batch_bbox_targets,
num_level_anchors)
bbox_weights_list = batch_images_to_levels(batch_bbox_weights,
num_level_anchors)
res = (labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, num_total_pos, num_total_neg)
if return_sampling_results:
res = res + (sampling_result, )
for i, r in enumerate(rest_results): # user-added return values
rest_results[i] = batch_images_to_levels(r, num_level_anchors)
return res + tuple(rest_results)
else:
res = (batch_labels, batch_label_weights, batch_bbox_targets,
batch_bbox_weights, batch_pos_mask, batch_neg_mask,
sampling_result, num_total_pos, num_total_neg,
batch_anchors)
return res