RockeyCoss
add code files”
51f6859
raw
history blame
5.43 kB
_base_ = [
'../_base_/datasets/coco_panoptic.py', '../_base_/default_runtime.py'
]
plugin = True
plugin_dir = 'projects/instance_segment_anything/'
model = dict(
type='DetWrapperInstanceSAM',
det_wrapper_type='focalnet_dino',
det_wrapper_cfg=dict(num_classes=91,
param_dict_type='default',
ddetr_lr_param=False,
onecyclelr=False,
modelname='dino',
frozen_weights=None,
backbone='focalnet_L_384_22k_fl4',
focal_levels=4,
focal_windows=3,
use_checkpoint=False,
dilation=False,
position_embedding='sine',
pe_temperatureH=20,
pe_temperatureW=20,
return_interm_indices=[0, 1, 2, 3],
backbone_freeze_keywords=None,
enc_layers=6,
dec_layers=6,
unic_layers=0,
pre_norm=False,
dim_feedforward=2048,
hidden_dim=256,
dropout=0.0,
nheads=8,
num_queries=900,
query_dim=4,
num_patterns=0,
pdetr3_bbox_embed_diff_each_layer=False,
pdetr3_refHW=-1,
random_refpoints_xy=False,
fix_refpoints_hw=-1,
dabdetr_yolo_like_anchor_update=False,
dabdetr_deformable_encoder=False,
dabdetr_deformable_decoder=False,
use_deformable_box_attn=False,
box_attn_type='roi_align',
dec_layer_number=None,
num_feature_levels=5,
enc_n_points=4,
dec_n_points=4,
decoder_layer_noise=False,
dln_xy_noise=0.2,
dln_hw_noise=0.2,
add_channel_attention=False,
add_pos_value=False,
two_stage_type='standard',
two_stage_pat_embed=0,
two_stage_add_query_num=0,
two_stage_bbox_embed_share=False,
two_stage_class_embed_share=False,
two_stage_learn_wh=False,
two_stage_default_hw=0.05,
two_stage_keep_all_tokens=False,
num_select=300,
transformer_activation='relu',
batch_norm_type='FrozenBatchNorm2d',
masks=False,
aux_loss=True,
set_cost_class=2.0,
set_cost_bbox=5.0,
set_cost_giou=2.0,
no_interm_box_loss=False,
focal_alpha=0.25,
decoder_sa_type='sa', # ['sa', 'ca_label', 'ca_content']
matcher_type='HungarianMatcher', # or SimpleMinsumMatcher
decoder_module_seq=['sa', 'ca', 'ffn'],
nms_iou_threshold=-1,
dec_pred_bbox_embed_share=True,
dec_pred_class_embed_share=True,
use_dn=False,
dn_number=100,
dn_box_noise_scale=0.4,
dn_label_noise_ratio=0.5,
embed_init_tgt=True,
dn_labelbook_size=91,
match_unstable_error=True,
# for ema
use_ema=False,
ema_decay=0.9997,
ema_epoch=0,
use_detached_boxes_dec_out=False),
det_model_ckpt='ckpt/focalnet_l_dino.pth',
num_classes=80,
model_type='vit_b',
sam_checkpoint='ckpt/sam_vit_b_01ec64.pth',
use_sam_iou=True,
)
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
# test_pipeline, NOTE the Pad's size_divisor is different from the default
# setting (size_divisor=32). While there is little effect on the performance
# whether we use the default setting or use size_divisor=1.
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=1),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
data = dict(
samples_per_gpu=1,
workers_per_gpu=1,
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))