Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
import torch | |
from torch.utils.data import DistributedSampler as _DistributedSampler | |
from mmdet.core.utils import sync_random_seed | |
from mmdet.utils import get_device | |
class DistributedSampler(_DistributedSampler): | |
def __init__(self, | |
dataset, | |
num_replicas=None, | |
rank=None, | |
shuffle=True, | |
seed=0): | |
super().__init__( | |
dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) | |
# In distributed sampling, different ranks should sample | |
# non-overlapped data in the dataset. Therefore, this function | |
# is used to make sure that each rank shuffles the data indices | |
# in the same order based on the same seed. Then different ranks | |
# could use different indices to select non-overlapped data from the | |
# same data list. | |
device = get_device() | |
self.seed = sync_random_seed(seed, device) | |
def __iter__(self): | |
# deterministically shuffle based on epoch | |
if self.shuffle: | |
g = torch.Generator() | |
# When :attr:`shuffle=True`, this ensures all replicas | |
# use a different random ordering for each epoch. | |
# Otherwise, the next iteration of this sampler will | |
# yield the same ordering. | |
g.manual_seed(self.epoch + self.seed) | |
indices = torch.randperm(len(self.dataset), generator=g).tolist() | |
else: | |
indices = torch.arange(len(self.dataset)).tolist() | |
# add extra samples to make it evenly divisible | |
# in case that indices is shorter than half of total_size | |
indices = (indices * | |
math.ceil(self.total_size / len(indices)))[:self.total_size] | |
assert len(indices) == self.total_size | |
# subsample | |
indices = indices[self.rank:self.total_size:self.num_replicas] | |
assert len(indices) == self.num_samples | |
return iter(indices) | |